
Numeric control

Albatros

Tecnologie e Prodotti per l'Automazione

3.2.3

This documentation is property of TPA srl
Any unauthorized duplication is forbidden.
The Company reserves the right to modify the contents at
any time.

ITable of Contents

Numeric control

Table of Contents

Introduction 11

1How to use this manual1.1

1Work windows1.2

System composition 22

2Access rights to the system2.1

2Multilingual support2.2

2Typical architecture of the system2.3

3Organization and logic configuration2.4

5Devices2.5

Synoptic Panel 63

6Using the Synoptic Panel3.1

6How to operate on the Synoptic Panel3.2

6How to act on Devices3.3

6Manual Axis Movement3.4

Technological and Tool parameters 84

8Technological Parameter Window4.1

9Tool Parameter Window4.2

Diagnostics 105

10The Diagnostics window5.1

10Diagnostics window composition5.2

10Representation of the Devices5.3

11Interacting with Devices5.4

11
List of navigation keys to navigate through a tree
structure

5.5

12Linearity correctors5.6

12Axis calibration control board5.7

Errors and Notifications 156

15Introduction6.1

16System Errors6.2

16Errors generated by axes control6.2.1

161 AxisName: incorrect encoder connection

162 AxisName: not ended movement

163 AxisName: servoerror

164 AxisName: limit switch positive

165 AxisName: limit switch negative

II Albatros

Numeric control

1710 AxisName: the Real-Time execution is faster than the profile construction

17Errors generated by remote I/O6.2.2

172049 Receiver number: incorrect configuration

172050 Receiver number: disconnected

172051 Receiver number: reconnected

17
2052 Receiver number: error reading Output not connected (number
OutputNumber)

172054 Receiver number: wrong type

172055 Receiver number: initialized

182056 Receiver number: +24 VDC power fail

182057 GreenBus power fail

182058 Receiver number: error reading DeviceType DeviceName

182059 Test failed on dual port memory of transmitter

182060 Error initializing transmitter

182061 Error transmitting firmware to transmitter

192062 Error transmitting configuration to transmitter

192063 Error transmitting configuration to receiver

192064 Receiver number: Incompatible firmware version

192065 Receiver number: Error in an asynchronous communication

192066 Receiver number: Generic error

192067 Receiver number: Error while transmitting the configuration

192068 Receiver number: Internal error n. errornumber

202069 Receiver number: +24 VDC power fail in bank number

20Errors generated by MECHATROLINK-II6.2.3

20
2308 Board BoardNumber: The initialisation failed due to an incorrect setting
of a configuration parameter

20
2341 Board BoardNumber: The number of servodrives exceeds the maximum
number allowed

20
2342 Board BoardNumber: The hardware address of servodrive Servo
exceeds the maximum value allowed

212349 Board BoardNumber: Servodrive Servo not connected

21Errors generated by the CanBUS control6.2.4

212761 Node number: disconnected

212762 Node number: reconnected

212763 Error: missing transmission

212764 Node number: Error of non-reception

212765 Node number: Initialized

212766 Fault condition on CAN interface

212767 CANopen status loss

222768 Node number: Error of PDO non-reception

222769 Node number: Error receiving a non-configured node

222770 Node number: Wrong configuration

222771 Node number: SDO communication error

222772 Timeout on querying nodes CAN cycle

223073 Node number: Emergency error n. ErrorNumber

223074 Node number: Generic CAN error n. ErrorNumber

22
3088 CAN Board number: node NodeNumber: SDO communication error nr.
ErrorNumber - description

23Errors generated by bus EtherCAT control6.2.5

233329 Error in the communication socket initialization

233330 Error during the EtherCAT network scan

233331 Error in the configuration of the transmission mailbox

233332 Error in the configuration of the receive mailbox

23
3333 EtherCAT board number: Error in the expansion type of node
NodeNumber

243334 Error during the PDO configuration

243335 Node NodeNumber in alarm (ErrorNumber)

25
3336 EtherCAT board number: The expansion number of node NodeNumber
is wrong

253337 EtherCAT board: Node NodeNumber: Disconnected

IIITable of Contents

Numeric control

253338 EtherCAT board: Node NodeNumber: Reconnected

25
3340 EtherCAT board: Node NodeNumber did not respond to the request
(Code)

263341 EtherCAT board: Node NodeNumber does not exist

263342 Disconnected cable

26
3343 EtherCAT board number: Node NodeNumber does not switch to the
SAFE-OPERATIONAL status (Code)

26
3344 EtherCAT board number: Node NodeNumber does not switch to the
OPERATIONAL status (Code)

263345 EtherCAT board: Unstable communication

26
4400 Too many active axes in FASTREAD (Function:NameFunction
line:NumberLine)

27Errors generated by initialization6.2.6

27769 Error in software configuration

27770 Wrong IRQ number in configuration

27772 Error reading the buffer memory area while initialising

27773 Reached maximum number of axes in configuration

27774 Axis Real-Time is not running

27775 No time left to run GPL

28776 Real-Time execution time too long

28777 Watchdog expired

28778 Main firmware code is blocked

281025 Board BoardNumber: It does not respond to command number

281026 Board BoardNumber: Error transmitting firmware to the axis board

281028 Board BoardNumber: Firmware not present

281029 Board BoardNumber: Main blocked

281031 Board BoardNumber: Initialization error

291032 Board BoardNumber: Dual port memory test failed

291033 Board BoardNumber: Firmware Boot code is not running

291035 Board BoardNumber: Not present

291037 Board BoardNumber: Failed to open the dual port memory

291039 Board BoardNumber: Watchdog expired

291040 Board BoardNumber: +24 VDC power fail

301047 Board BoardNumber: Software configuration not allowed

301052 Board BoardNumber: Boot code is running

301053 Board BoardNumber: Axis Watchdog expired

301055 Watchdog expired for board BoardNumber

301056 Board BoardNumber: CAN interface power failed

301057 Board BoardNumber: Internal error n° ErrorNumber

30Errors generated by memory management6.2.7

301281 Error in the memory allocation on the heap area

301286 Error handling heap

311287 Too many memory deallocations from the heap

311289 Error creating global variables

311290 Error in the dimension of non-volatile variables

311291 Error in the dimension of read-only variables

31Errors generated by faults6.2.8

311559 Breakpoint Trace

311569 Invalid microprocessor operating code

311586 INTEGER value divided by zero

321600 Overflow in the result of a floating point operation

321601 Underflow in the result of a floating point operation

321602 Invalid argument in a floating point operation

321603 Floating point value divided by zero

321604 Incorrect result in a floating point operation

321605 Incorrect value for a floating point data

321728 Attempt to get access to an invalid address

331735 Generic exception

IV Albatros

Numeric control

331736 Data not aligned

331801 Temperature alarm

331802 Fan alarm

331803 Unstable CPU frequency

33Errors generated by GPL instructions6.2.9

334097 The DeviceType device DeviceName is not configured

334098 The global variable VariableName does not exist

344099 Function FunctionName not found

344101 Inconsistent management of axis AxisName

344105 Instruction not executable on axis AxisName

344106 The remote module of the stepper axis AxisName is not connected

344107 SYSOK instruction has incorrect arguments

344108 AxisName: Final position beyond software limits

344110 Wrong speed

354111 Negative Acceleration on axis AxisName

354112 Negative Deceleration on axis AxisName

354114 Axis AxisName: reset on Fast Input not effected

354115 Axis AxisName: zero pulse not found

354353 Unknown instruction code (Function:FunctionName line:LineNumber)

35
4354 Incorrect mathematical operation (Function:FunctionName
line:LineNumber)

36
4355 Incorrect address of matrix or vector (Function:FunctionName
line:LineNumber)

36
4356 Instruction RET without CALL (Function: FunctionName line:
LineNumber)

364357 Local variable does not exist (Function:FunctionName line:LineNumber)

364358 Jump label does not exist (Function: FunctionName line: LineNumber)

364359 Incorrect macro argument (Function:FunctionName line:LineNumber)

37
4360 Error in the memory allocation during the execution
(Function:FunctionName line:LineNumber)

374361 Too many tasks enabled (Function:FunctionName line:LineNumber)

374362 Incorrect matrix format (Function:FunctionName line:LineNumber)

37
4363 Too many active ONINPUT instructions (Function:FunctionName
line:LineNumber)

37
4364 Axis already engaged with local reference (Function:FunctionName
line:LineNumber)

38
4365 Instruction ONINPUT activated on the same INPUT
(Function:FunctionName line:LineNumber)

38
4366 Too many ONFLAG instructions active (Function:FunctionName
line:LineNumber)

38
4367 Instruction ONFLAG activated on the same FLAG
(Function:FunctionName line:LineNumber)

38
4368 A ReadOnly variable writing has been attempted
(Function:FunctionName line:LineNumber)

38
4369 Too many master axes active (Function:FunctionName
line:LineNumber)

384370 Too many slave axes active (Function:FunctionName line:LineNumber)

39
4372 Incorrect use of an instruction (Function:FunctionName
line:LineNumber)

394373 Can't read feed rate (Function:FunctionName line:LineNumber)

39
4374 Too many IPC instructions in execution (Function:FunctionName
line:LineNumber)

39
4375 FASTREAD executed on axes from different boards
(Function:FunctionName line:LineNumber)

394378 Instruction not enabled (Function:FunctionName line:LineNumber)

40
4379 The instruction cannot be used in functions launched by Interrupt
(Function:FunctionName line:LineNumber)

40
4380 Too many writing requests into buffer memory area
(Function:FunctionName line:LineNumber)

40
4381 Cannot use a serial channel not yet open (Function:FunctionName
line:LineNumber)

40
4382 Cannot open a serial channel already open (Function:FunctionName
line:LineNumber)

VTable of Contents

Numeric control

40
4383 Attempt to open too many auxiliary processes (Function:FunctionName
line:LineNumber)

40
4384 Auxiliary process not in execution (Function:FunctionName
line:LineNumber)

40
4385 Attempt to open an auxiliary process from another task
(Function:FunctionName line:LineNumber)

414391 Error activating SYSOK (Function:FunctionName line:LineNumber)

414394 Too many cycle errors (Function:FunctionName line:LineNumber)

414395 Too many messages (Function:FunctionName line:LineNumber)

414397 Stack overflow (Function:FunctionName line:LineNumber)

414398 Stack underflow (Function:FunctionName line:LineNumber)

414399 Parameter out of range (Function:FunctionName line:LineNumber)

414865 The machine definition for the interpolation (G216 or G217) is missing

42
4866 The index definition of the selected machine configuration (M6) is
missing

42Errors generated by CNCTPA communication driver6.2.10

4216385 Disconnected module

4216386 Connected module

4216387 Reconnected module

4216388 Initialized module

4216389 Module interrupted connection

4216641 The control firmware does not respond to commands

4316642 TpaSock does not respond to commands

4316643 Operating System cannot use RTX

4316645 Error sending firmware code

4316646 Could not restart firmware code

4316897 RTX not installed

4316898 User has no Administrator rights

4316899 Wrong dimension of module RAM

4416900 Module IP address is wrong

4416901 Module is already connected to another plant

4416902 The module is not configured

4416903 Firewall settings prevent communication

4416904 Network board not present or disabled

4416905 Control firmware code missing

4516906 RTX version incompatible with control firmware code

4516907 Operating system version is incompatible with control firmware code

4517153 BoardType: Firmware code of GreenBUS transmitter missing

4517154 BoardType: Part of firmware code of GreenBUS transmitter missing

4517155 BoardType: Error sending bootstrap code of GreenBUS transmitter

4517156 BoardType: Error sending Main code of GreenBUS transmitter

4517157 BoardType: Bootstrap code missing

4617158 BoardType: Main code missing

4617159 BoardType: Error sending bootstrap code

4617160 BoardType: Error sending Main code

4617409 Could not send auxiliary executable

4617410 Could not run auxiliary executable

4617667 DLLName: Could not run firmware code

4617668 DLLName: Could not get pointer to shared RAM

4717921 Could not send NODETPA

4717922 NODETPA did not restart

4717923 NODETPA not running

4718177 NODETPA tried to access an invalid address

47Generic Notifications6.3

47Albatros starts running6.3.1
47Albatros ends running6.3.2
47Computer enters stand-by mode6.3.3
47Computer exits stand-by mode6.3.4

VI Albatros

Numeric control

47Computer shutdown6.3.5
48Current access level6.3.6
48Software update of modules6.3.7
48Sending configuration to the modules6.3.8

System Configuration 497

49Introduction7.1

49Device Configuration7.2

49Introduction7.2.1
49Generic Device7.2.2
50Digital output7.2.3
50Analog input7.2.4
50Axis7.2.5

50Basic Data

50Movement parameters

51Interpolation parameters

51Other parameters

51Reference parameters

51Access levels

52Axis chaining

52Linearity correctors

52Logical Configuration7.3

52Plant Configuration7.3.1
53Group Configuration7.3.2

54Physical Configuration7.4

54System Configuration7.4.1
54Hardware Configuration7.4.2

55Default Configurations

56Configure a node of a TPA bus

57Configure a node of a CAN bus

57Bus control board

58CAN node

58Insert a new node

58Configure a node

58Characteristics of the EtherCat Management in Albatros

58Introduction

58EtherCAT hardware configuration

59Description of a PDO

60Modify a drive PDO

61Additional PDOs

61Automatic acquisition of EtherCAT nodes

61Virtual-physical Configuration7.4.3
63Cabling maps7.4.4

63
List of navigation keys to navigate through a tree
structure

7.5

Development tools 648

64Editor GPL8.1

64GPL Editor functions8.1.1

65Use of regular expressions

67Insert a Message8.1.2
67Cryptography8.1.3
67Avalaible keyboard shortcut list8.1.4

69Libraries8.2

VIITable of Contents

Numeric control

70Debug8.3

70The debugger8.3.1
70Task in execution8.3.2
70All tasks8.3.3
71Show call stack8.3.4
71Breakpoints8.3.5
72Variable content8.3.6
72Available keyboard shortcut list8.3.7

73Control initialization8.4

73Network Connections8.4.1
73Hardware Diagnostics8.4.2

73EtherCAT network topology

73Viewing and editing objects in the nodes

74Test8.5

74Print global on disk8.5.1
75Start function8.5.2
75Message Import8.5.3
76User notice in the alarm report file8.5.4

76Tools8.6

76Customize…8.6.1

78Browser8.7

78The browser8.7.1
78Source browser8.7.2
79Available keyboard shortcut list8.7.3

Accessory programs 809

80XConfMerge: program to merge the configuration file9.1

81XParMerge: program to merge two parameter files9.2

GPL Language 8210

82Basic Features10.1

82Introduction to GPL language10.1.1
82Conventions and terminology10.1.2
84Variables10.1.3

84Type of data

86Data conversion

86Declaration and Visibility of the variables

87Modifiers

87Assigning a RANGE

88Writing and Reading Rights

88Constants

89Predefined constants10.1.4
89Keywords10.1.5
90Functions10.1.6
92Device parameters10.1.7
93Multitasking10.1.8
94Communications10.1.9
95Variables used in programming10.1.10
95Axes10.1.11
97Linearity correctors10.1.12
98Message handling in different languages10.1.13
98System Error Management10.1.14

98Special functions10.2

VIII Albatros

Numeric control

98Axis movement customization10.2.1
100Standard calibration and movement functions10.2.2
103Function OnUIEnd#10.2.3
103Function OnUIPlugged#10.2.4
104Function OnUIUnplugged#10.2.5

104Instructions10.3

104Conventions10.3.1
104Types of instructions in the GPL language10.3.2
110Input/Output10.3.3

110GETFEED

110INPANALOG

111INPFLAGPORT

111INPPORT

111MULTIINPPORT

111MULTIOUTPORT

112MULTIRESETFLAG

112MULTIRESETOUT

112MULTISETFLAG

112MULTISETOUT

112MULTIWAITFLAG

113MULTIWAITINPUT

113OUTANALOG

114OUTFLAGPORT

114OUTPORT

114RESETFLAG

114RESETOUT

114SETFLAG

114SETOUT

115WAITFLAG

115WAITINPUT

116WAITPERSISTINPUT

116Axes10.3.4

116CHAIN

117CIRCABS

117CIRCINC

118CIRCLE

119COORDIN

120DISABLECORRECTION

120EMERGENCYSTOP

121ENABLECORRECTION

121ENDMOV

121FASTREAD

122FREE

122HELICABS

123HELICINC

123JERKCONTROL

124JERKSMOOTH

124LINEARABS

125LINEARINC

125MOVABS

126MOVINC

126MULTIABS

127MULTIINC

128NORMAL

128RESRIFLOC

128SETINDEXINTERP

128SETLABELINTERP

IXTable of Contents

Numeric control

129SETPFLY

129SETPFLYCHAINSTRAT

129SETPZERO

130SETPZEROCHAINSTRAT

130SETQUOTE

130SETQUOTECHAINSTRAT

131SETRIFLOC

131SETTOLERANCE

133START

133STARTINTERP

134STOP

134SWITCHENC

134WAITACC

135WAITCOLL

135WAITDEC

136WAITREG

136WAITSTILL

136WAITTARGET

136WAITWIN

137Axis Parameter

137Reading/Writing

137DEVICEID

137GETAXIS

143Point-to-point Movement

143SETACC

143SETDEC

143SETDERIV

144SETFEED

144SETFEEDF

144SETFEEDFA

144SETINTEG

145SETMULTIFEED

145SETPROP

145SETSLOPE

145SETVEL

146Interpolated Movement

146LOOKAHEAD

146SETACCI

146SETACCLIMIT

146SETACCSTRATEGY

147SETAXPARTYPE

147SETCONTORNATURE

147SETDECI

148SETDERIVI

148SETFEEDFAI

148SETFEEDI

148SETFEEDFI

149SETINTEGI

149SETPROPI

149SETSLOPEI

149SETSLOWPARAM

150SETVELI

150SETVELILIMIT

150Coordinated Movement

150SETFEEDCOORD

152SETOFFSET

152Chained Movement

X Albatros

Numeric control

152RATIO

153SETDYNRATIO

153Generic Parameters

153DYNLIMIT

154ENABLESTARTCONTROL

154NOTCHFILTER

154RESLIMNEG

155RESLIMPOS

155SETADJUST

155SETBACKLASH

157SETBIGWINFACTOR

157SETDEADBAND

158SETENCLIMIT

158SETINDEXEN

158SETINTEGTIME

158SETIRMPP

159SETLIMNEG

159SETLIMPOS

159SETMAXER

159SETMAXERNEG

160SETMAXERPOS

161SETMAXERTYPE

162SETPHASESINV

162SETREFINV

162SETRESOLUTION

162Counter10.3.5

162DECOUNTER

163INCOUNTER

163SETCOUNTER

163Timer10.3.6

163HOLDTIMER

163SETTIMER

163STARTTIMER

164Variables, Vectors and Matrixes10.3.7

164CLEAR

164FIND

164FINDB

165LASTELEM

165LOCAL

165MOVEMAT

166PARAM

166SETVAL

166SORT

167Strings10.3.8

167ADDSTRING

167CONTROLCHAR

168LEFT

168LEN

168MID

168RIGHT

169SEARCH

169SETSTRING

169STR

169VAL

170Communications10.3.9

170CLEARRECEIVE

170COMCLEARRXBUFFER

XITable of Contents

Numeric control

170COMCLOSE

170COMGETERROR

171COMGETRXCOUNT

171COMOPEN

171COMREAD

172COMREADSTRING

172COMWRITE

172COMWRITESTRING

172RECEIVE

177SEND

182SENDIPC

183WAITIPC

183WAITRECEIVE

183Mathematics10.3.10

183ABS

184ADD

184AND

184ARCCOS

185ARCSIN

185ARCTAN

185COS

185DIV

186EXP

186EXPR

187LOG

187LOGDEC

188MOD

188MUL

188NOT

189OR

189RANDOM

189RESETBIT

190ROUND

190SETBIT

191SHIFTL

192SHIFTR

194SIN

194SQR

194SUB

195TAN

195TRUNC

195XOR

196Multitasking10.3.11

196ENDMAIL

196ENDREALTIMETASK

196ENDTASK

196GETPRIORITYLEVEL

197GETREALTIME

197GETREALTIMECOUNT

197HOLDTASK

197RESUMETASK

197SENDMAIL

198SETPRIORITYLEVEL

198STARTREALTIMETASK

198STARTTASK

199STOPTASK

199WAITMAIL

XII Albatros

Numeric control

199WAITTASK

200Flow management10.3.12

200CALL

200DELONFLAG

200DELONINPUT

200FCALL

201FOR/NEXT

201FRET

202GOTO

202IF/IFVALUE/IF-THEN-ELSE

203IFACC

203IFAND

204IFBIT

204IFBLACKBOX

205IFCHANGEVEL

205IFCOUNTER

205IFDEC

206IFDIR

206IFERRAN

207IFERROR

207IFFLAG

208IFINPUT

209IFMESSAGE

209IFOR

210IFOUTPUT

210IFQUOTER

211IFQUOTET

211IFRECEIVED

212IFREG

212IFSAME

212IFSTILL

212IFSTR

213IFTARGET

213IFTASKHOLD

213IFTASKRUN

214IFTIMER

214IFVEL

215IFWIN

215IFXOR

216ONERRSYS

216ONFLAG

217ONINPUT

217REPEAT/ENDREP

218RET

218SELECT

218TESTIPC

219TESTMAIL

219Various10.3.13

219CLEARERRORS

220CLEARMESSAGES

220DEFMSG

221DELAY

221DELERROR

221DELMESSAGE

222ERROR

223IFDEF/ELSEDEF/ENDDEF

225MESSAGE

XIIITable of Contents

Numeric control

227SYSFAULT

227SYSOK

227TYPEOF

227WATCHDOG

228MECHATROLINK-II10.3.14

228MECCOMMAND

229MECGETPARAM

229MECGETSTATUS

231MECSETPARAM

231Standard fieldbus10.3.15

231AXCONTROL

233AXSTATUS

234CNBYDEVICE

234READDICTIONARY

235WRITEDICTIONARY

235EtherCAT10.3.16

235ACTIVATEMODE

235ECATGETREGISTER

235ECATSETREGISTER

236GETPDO

236SETEOE

236SETPDO

237TMSBus boards with CAN control10.3.17

237GETCNSTATE

237GETSDOERROR

237GETMNSTATE

237RECEIVEPDO

238SENDPDO

238SETNMTSTATE

238Simulation10.3.18

238DISABLE

238DISABLEFORCEDINPUT

239ENABLE

239ENABLEFORCEDINPUT

239RESETFORCEDINPUT

239SETFORCEDANALOG

240SETFORCEDINPUT

240SETFORCEDPORT

240Blackbox10.3.19

240ENDBLACKBOX

241PAUSEBLACKBOX

241STARTBLACKBOX

241ISO10.3.20

241ISOG0

242ISOG1

243ISOG9

243ISOG90

243ISOG91

243ISOG93

243ISOG94

244ISOG216

244ISOG217

245ISOM2

245ISOM6

246ISOSETPARAM

247KINEMATICEXPR

248Instructions that are no longer available10.3.21

XIV Albatros

Numeric control

248Instructions that cannot be used with interrupt10.3.22

250Examples10.4

250Homing on Interrupt10.4.1
251Axis movement server10.4.2
253Main Cycle with error management10.4.3
253Operations on strings10.4.4
254Sequential / Parallel Execution10.4.5
254Homing Routine10.4.6
255Iso movements10.4.7

Introduction 1

Numeric control

1 Introduction

1.1 How to use this manual

This user guide describes the functions of Albatros numeric control.
Thanks to the structure of the manual, getting to know the system and learning how to use it will be an easy
task for the operator.

The main subjects of each section of the guide are:
· Albatros windows and tools.
· description of the typical architecture of an Albatros system.
· how to display the devices and operate on them with manual and diagnostic functionality, using the

Synoptic window.
· how to display and modify Technological Parameters, Geometrical Parameters and Tool Parameters.
· how to display the devices and operate on them with manual and diagnostic functionality.

To avoid overcharging this guide, for further information concerning the use of the mouse, menus and
toolbar and all the current operative functions of Windows, we refer the reader to Windows Operative
System manuals.

1.2 Work windows

There are various types of work windows, depending on the kind of operations required, and more than one
can be kept open at the same time.

The types of windows are the following:

Window Description
Main Albatros main window. It allows to call functions and contains all the

other windows whose content depends on the specific application they
represent.

Synoptic it contains a graphic representation of the machine, or of parts of the
machine, and allows to operate on them.

Technological Parameters it enables to display and modify the technological parameters.
Tool Parameters it enables to display and modify the tool parameters.
Diagnostic it enables to display the status of the devices and, if possible, to operate

on them.
System Errors window containing the list of the most recent system errors. It is also

possible to display cycle errors and messages.
System Configuration it enables to display and modify the logical and physical devices of the

machine.

Albatros2

Numeric control

2 System composition

2.1 Access rights to the system

Albatros has four access levels to the system:

· User: is the level with most access restrictions. It does not allow to modify any of the device settings. It is
the level used for machining and normal machine operations. When the system is booted, this access level is
automatically enabled.

· Service: is the level used for ordinary maintenance of the machine. The operator should be able to modify
some configuration parameters, without altering the structure of the machine.

· Manufacturer: is the level used to configure plants and machines. At this level almost any kind of
modification is possible. It is used by developers.

· Tpa: is the highest access level of the system. Its function is to protect access to particularly delicate
settings, whose modification requires a detailed knowledge of Albatros. This level is very rarely used and the
access password must be requested directly at TPA.

To access the system at a higher level than User, or to return to User level after introducing changes at a
higher level, the corresponding password must be introduced.

To recall the login window, press Ctrl + * (asterisk). Alternatively, click on the icon on the right of the
Windows Task bar with the right mouse button to view a menu showing the Change pass level command.
The window you are opening looks like this:

Login window

Now enter the password and press the [OK] key to confirm. The letters composing the word will be visualized
as "*" characters, so that none can read the password typed in.
By typing in the password, you have logged into the corresponding access level. To have a confirmation of the
level accessed, select the heading About Albatros from the Help menu.

If the password entered is not correct, the error message "Warning! Wrong Password!" will appear.

2.2 Multilingual support

Albatros supports the display of text in multiple languages.

Change language
The language may be changed at any access level of the system. To select a different language, you need to

use the key combination Ctrl + / or click on the icon from the Windows "task bar".
In the window that will open, select the language required and click on [OK].
The language change will not take place immediately, but at the following restart of Albatros.

2.3 Typical architecture of the system

Because many aspects of graphical representation and the structure of basic data of the Machine depend
greatly on the kind of Machine, this Manual provides by way of example a description of the composition of a
typical system, as well as some general information.

The detailed information, the diagrams and the graphics of the real system obviously depend on the specific
application, and are consequently prepared by the Manufacturer of the Machine Tool.

System composition 3

Numeric control

The Albatros numerical control system is composed of a supervisor PC, showing the Operator-Machine
interface, and a number of Modules (range between 1 and 16) for the piloting and control of all operative
resources of the Tool Machine or Plant.

So, you can have two kinds of plants:
Monomodule consisting of one module connected directly to the PC bus.

Multimodule consisting of a minimum of 1 and a maximum of 16 modules, usually used for
applications on Plants or Lines with several machines; the PC unit in this case is
physically separated from the Modules, which can be located in different points
of the Line or Plant.

In both architectures, the modules are composed of one or more axis boards for the direct control of the
Machine Axes and the logic management of the Input/Output system.
In the monomodule version, the axis boards are installed directly in the Supervisor PC, while in the
multimodule version they are installed in an industrial PC (with or without screen and keyboard) connected to
the Supervisor PC via Ethernet networl. The following figure shows the diagram of the connection between the
Supervisor PC and the remote module (Clipper). The main activities of the single components are also
described.

Intelligent remote devices pilot I/O devices and axes (TRS-AX remote) directly on the machine. These devices
read the Digital Input (ON/ OFF) or Analog Input channels, refresh the Digital or Analog Output channels and
are connected to the Modules by means of a GreenBUS (serial bus RS485 - 1 Mbaud), CAN bus, and EtherCAT.
The profile machining of Albatros is protected by a USB hardware key, configured by TPA.

2.4 Organization and logic configuration

In the Albatros system, the descriptive structure of the plant or single tool machine is organised in a
technological file with a hierarchical structure.

This approach allows, if necessary, to maintain the modular structure of the machine as far as the configuration
data and access modalities are concerned, by classifying it in terms of dynamic association of various modules,
aggregates and devices that may be enabled or disabled according to the required setting.

Albatros4

Numeric control

Following this logical structure, in the most general and complex case, the higher hierarchical level will be
composed by:

1. Plant simply a set of machines. It represents the operational parts managed by the
Numerical Control. The plant is always present, even in the case of a single
machine and it is not necessary to mention it explicitly.

2. Machine from a "logic" point of view it is defined as a set of devices (axes, timer etc.) and
control cycles, corresponding to a GPL language code that applies the control
algorithms of the machine itself. Generally the machine is provided with a large
number of devices which are organised into groups.

3. Groups are "containers" which allow to organise the components of the machine following a
logical criteria. For example we could define an "axes" group containing all the axes
of the machine, the limit switches, the cyclic performing the axis homing etc.

4. Subgroups indicate a further subdivision of a group. For example, the "axes" group could be
divided into "digital axes" and "stepper axes".

5. Devices are the lowest level of the hierarchy. They are a logic representation of the
electrical and mechanical components of the machine and are independent of the
hardware below.

The following figure schematises the structure of a hypothetical plant composed of two machines:

Plant

Machine 1

Group 1

Subgroup 1

Input 1

Output 1

Subgroup 2

Axis x

Input 2Group 2

Subgroup 1

Axis xMachine 2

Group 1

Subgroup 1

Axis X

Example of hierarchical structure of a plant.

System composition 5

Numeric control

NOTE: The Groups do not necessarily have to be divided into Subgroups, they can be directly made up of
Devices.

In the case of a plant with more than one machine, to access given functions, such as Diagnostic, System
configuration and Technological Parameters, it is necessary to select the machine whose data you need to
view.

2.5 Devices

The devices can be grouped into two categories: physical devices and logical devices. In the system, all the
devices are identified by a name describing their function.

Physical devices

By physical devices, we intend all those parts which act on the electrical or pneumatic parts of the machine or
verify their status. These are:

Symbol Device Function

Digital input it verifies the status, "on" or "off", of a device. For example, the safety
switch of a door.

Digital output it enables or disables a device, setting it on "on" or "off". It is used, for
example, to pilot solenoid valves.

Analog input it measures the voltage of input power in the corresponding terminal.
For example the power generated by a tachometer dynamo.

Analog output it defines the output voltage of the corresponding terminal. It can be
used, for example, to pilot an inverter.

Input port it consists of 8 digital input channels.

Output port it consists of 8 digital output channels.

Axis it controls the movement of electrical axes. It is possible to control
various kinds of axes: analogically controlled, digitally controlled,
stepping motors, counting axes (only encoder reading).

Logical devices

Logical devices are parts which act exclusively within the operating programs and do not have a physical
counterpart:

Symbol Device Function

Timer time counting device. The measurement unit is the second. Resolution: 4
ms. It can only indicate positive numbers, displaying a maximum time
span of 8.589.934 seconds (with real-time at 250 Hz). The amount is
recorded in the non-volatile memory of the axis board.

Counter operation counting device. It may display any number between -
2.147.483.648 and +2.147.483.647. The amount is recorded in the non-
volatile memory of the axis board.

Flag bit off/on indicator.

Flag switch special flags that can be connected to certain buttons on the tool bar, as
the Start flag, for example.

Flag Port it is composed of 8 flag bit channels.

Variable GPL code integer type global variable.

Variable GPL code char type global variable.

Variable GPL code float type global variable.

Variable GPL code double type global variable.

Variable GPL code string type global variable.

Variable GPL code array type global variable.

Variable GPL code matrix type global variable.

Albatros6

Numeric control

3 Synoptic Panel

3.1 Using the Synoptic Panel

During the machine operation, it is possible to open the Synoptic Panel window to verify the status of the most
important devices.

Synoptic panels display the same information contained in the diagnostic window. However, while in the latter
the information is displayed in a tree structure (which includes all the devices present on the machine),
synoptics illustrate the information graphically (displaying, for example, an image of the machine and setting
the position of the axes next to the axes themselves). Synoptics also allow to select the most significant
information, grouping the remaining information in secondary screen pages, to be recalled by the user when
necessary.

3.2 How to operate on the Synoptic Panel

The Operator can select the various pages composing the synoptic, for diagnostic purposes, by double clicking
with the mouse on one of the areas of the machine. The different areas are delimited by a dotted rectangle,
and are also known as "hot spots".

To select a "hot spot", a device or an axis, simply move the mouse pointer on the image of the required object.
The name of the selected device appears at the same time in the Status Bar.

The appearance of the mouse pointer changes according to the selected object, to indicate what kind of
operation is allowed on that specific object. These are:

magnifying glass if it is a "hot spot"

 hand if it is an output device

 text cursor if it is a set-value box

3.3 How to act on Devices

To act on a device, point the mouse on the required device, and complete the action as described below
(actions vary according to the type of device).

Representation
mode

Action Device

Device icon point and click Digital output
Flag switch
Flag bit

Set-Value box point, click and set
value

Analog output
Output port
Flag port
Axis position
Timer
Counter

3.4 Manual Axis Movement

To access the manual axis movement function, it is necessary to have the required access rights. Access rights
are assigned by the manufacturer of the machine.

To interact with an axis, simply double click with the mouse on the positions display field of the required axis.
The window for the axis movement will open. In the case of Virtual, Stepping motor and Count axes, the
window contains less data. For example, in the case of a Count axis, only the Real Position and Speed values
are displayed.

The window is composed of two areas, whose contents are described below.

Visualization area
· Three cells displaying the axis Real Position [mm], its Speed [m/min] and the Loop Error or tracking

error.

Synoptic Panel 7

Numeric control

· Two select buttons which indicate the axis Status (Free = open loop, for example, because of a
system error, Normal = closed loop, corresponding to normal position control status). It is also
possible to set the status by using these buttons.

· During movement, the signalling of the axis Status (example: Acceleration).

· Two buttons to select negative or positive direction axis movement.

· The button, to Stop axis movement at any moment, during movement in Absolute or Step mode.

Movement area
· Two cells to set a Negative Position and a Positive Position, which will be used in Absolute mode.
· One cell to set the Speed set on the axis during manual movements.
· Three select buttons to choose what kind of movement to apply: Jog, Absolute position or Step.
· One cell to set the Step value to be used in Step mode.

To move an axis, set the parameters described above as required. Select the movement mode and press the

 button (to move the axis in positive direction) or the button (to move the axis in negative direction).

In Jog mode the axis will keep on moving as long as the or minus button is kept pressed.

In Step mode, the axis will move as far as indicated in the "Step" cell each time the or button is pressed.
In Absolute mode, the axis reaches directly the position indicated in the Positive position or Negative position
cell.

It is also possible to use the keyboard "+" (or Ctrl+P), "-" (or Ctrl+M) and "Space bar", instead of the ,

and buttons.

Albatros8

Numeric control

4 Technological and Tool parameters

4.1 Technological Parameter Window

The Technological Parameter file allows to record the geometrical and technical information of a machine. The
numeric control needs this information to handle machine functioning correctly.
To open: menu File->Open Technological Parameters.

Technological Parameters are usually organized in Groups/Subgroups (normally the groups and subgroups of
the Technological Parameters are independent of the groups and subgroups in which the machine devices are
divided). The display modes are defined by the Machine Manufacturer and depend on the specific application.

The values listed in the file are usually set by the manufacturer in the Machine calibration phase and cannot be
modified by the User, if not exceptionally. Therefore, some data may be protected by Password to avoid
accidental modifications which could affect correct machine functioning.

The Technological Parameter window displays in a tree structure all the Groups and Subgroups of parameters
that compose the file, as shown in the following figure.

Structure of the Technological Parameter file.

The window contains Groups, displayed in a tree structure, with their relative Subgroups of parameters. The
tree structure can be expanded or collapsed using the and buttons found at each node. The +, -, and
Right/Left arrow keys can also be used to open and close parts of the tree.

How to operate on Technological Parameters
Once the required Group/Subgroup tree is opened, it is possible to access the page containing the data.
The data can be listed in a table, or in text or selection cells, depending on the type of data and how the
Manufacturer set the data.
If any data is modified, it is necessary to press [OK] to make the changes permanent.

Tooling
Tooling is an unusual kind of machine data. Typically, any information concerning the set of tools the machine
is equipped with (tooling) is saved in the Technological Parameter file. However, any information concerning
the tools themselves is saved in the Tools Parameter file. For this reason, to define the tooling of a machine, it
is necessary to combine the information contained in the two files. If the system provides for this situation, it
will be possible to recall information contained in the Tools Parameter file from the Technological Parameters
file. Usually, the connection is implemented by means of a button with a similar icon to the one below.

Select the icon and double click on it with the mouse left button and a window containing the list of tools
defined in the Tools Parameter file will open, allowing to select the required tool. When this has been done, the
icon button changes, displaying the icon that represents the specified tool.
It is also possible to display the tool data by double clicking on the icon with the right hand button of the
mouse.

Technological and Tool parameters 9

Numeric control

4.2 Tool Parameter Window

The window of Tools Parameters can be opened in Menu File->Open Tool Parameters.
Tool parameters, determined by the Manufacturer on the basis of the operations performed by the machine,
are usually organised as shown in the figure below:

Example of a Tool Parameter Window.

The Tools Parameter window is divided in two areas:
· the left area contains the Groups, with the corresponding Subgroups of tools, displayed in a tree structure.

The tree structure can be expanded or collapsed using the and buttons placed at each node. For
example, we could have a Milling Cutters Group composed by Subgroups of cutters with different
characteristics, such as profile milling cutters, traverse milling cutters etc. Each one of these subgroups is
associated to one or more tools whose characteristics are assigned in a dialog window defined by the
manufacturer. The tools contained in each subgroup are displayed in the right-hand side of the screen.

· the right area takes the name of the selected Subgroup and contains the list of the tools belonging to the
Subgroup. The tools defined in this area do not necessarily exist on the machine. The association between
the tool and the position on the machine (tooling) is normally done in the technological parameter file.

How to operate on Tool Parameters
Tools are added, modified and deleted from the file by means of buttons located in the lower section of the
window:

[New…] enables adding a new tool to the Subgroup. It opens the "New Tool" dialog window,
in which the following data can be inserted:
- Description: a message that identifies the tool. The description can be chosen
from the ones already in the list, if it has not already been assigned to another tool,
or a new description can be written.
- Image: an icon that identifies the tool. It can be chosen from the ones already in
the list, or it can be called from a folder using the [Image] button. The tool is
inserted in the list following the alphabetical order of the descriptions.

[Delete] allows removing a tool from the Subgroup, although it is subject to confirmation;
the description of the tool is not deleted and remains available for another tool.

[Edit…] allows replacing the description or image of the selected tool, through the same
dialog window described in the [New…] command.

Albatros10

Numeric control

5 Diagnostics

5.1 The Diagnostics window

The Diagnostic window can be opened during machine execution to allow the operator to keep machine
functioning under control, by monitoring the logic status of the I/O digital signals, analog I/O data, counters
and timers data and axes movement.
Depending on the access rights conceded by the manufacturer, it may also be possible to modify the status of
the devices.

If allowed by the access level, it is possible in real-time:

· to display the status (ON/OFF) of all the digital Input and Output signals.
· to able and disable the digital Output signals.
· to display the voltage (ranging between +/-10V) of the Analog inputs.
· to assign a voltage (ranging between +/-10V) to all the Analog outputs.
· to move an axis in Manual by selecting the speed, the Pitch or the final absolute Position, and display

real position, speed and loop error.
· to display and modify the global variables.

In the next paragraphs, the devices and global variables will be described in detail, together with their graphic
representation.

NOTE: In the diagnostic window only the devices enabled for the current access level are displayed.

5.2 Diagnostics window composition

It is possible to access the devices through the "Groups / Subgroups" structure, already described in the
chapter System composition, which are then displayed in a tree structure.
At the head of the structure we find the group, symbolized by the icon:

, followed by its Name and a Comment.

The structure can be expanded or collapsed by clicking on the or buttons. The tree can also be opened
and closed by clicking on: +, -, left/right arrow key.

When a Group is opened, the following items are displayed in the tree:

· the "Devices List" of the Group, indicated by the icon
· the Subgroups composing the Group, if any.

When a Subgroup is opened, the devices composing the subgroup are also displayed.

5.3 Representation of the Devices

The following information is shown with all the devices displayed.
· a graphic symbol;
· its Status or current value;
· its Name;
· a Comment.

The list below contains the graphic representations of the devices, the type of device and the value displayed in
real-time.

The status of digital inputs, digital outputs and flags is represented graphically by a LED which changes colour
depending on whether the input is enabled or disabled.

In the case of Ports, that is a number of lines (8) represented at the same time, a row of LEDs will be shown,
where the first line of the group is indicated by the right hand LED and the last one by the left hand LED.

Device Symbol Status Real-time display
Digital input status: Enabled = GREEN, Disabled = GREY

Digital
output

status: Enabled = RED, Disabled = GREY

Analog input current value

Diagnostics 11

Numeric control

Device Symbol Status Real-time display
Analog
output

current numeric value in Volts

Input port status of each line (as Digital input). Status: Enabled =
GREEN, Disabled = GREY

Output port status of each line (as Digital output). Status: Enabled =
RED, Disabled = GREY

Axis current absolute position

Timer current value in seconds

Counter current numeric value
Flag bit status: Enabled = YELLOW, Disabled = GREY

Flag switch status (as Flag bit). Status: Enabled = YELLOW, Disabled
= GREY

Flag port status of each line (as Flag bit). Status: Enabled =
YELLOW, Disabled = GREY

Global
variable

GPL code integer type global variable

Global
variable

GPL code char type global variable

Global
variable

GPL code float type global variable

Global
variable

GPL code double type global variable

Global
variable

GPL code string type global variable

Global
variable

GPL code array type global variable

Global
variable

GPL code matrix type global variable

5.4 Interacting with Devices

It is possible to interact with devices to read their status or modify their value, for diagnostic purposes.
However, this is not possible for some types of devices, such as input devices and other devices protected by
the Manufacturer. Should the Operator try to operate on these devices, a message will notify him.

When the device has been selected, double click on it with the mouse, or press Enter, or the Space Bar, to
access the window that allows to change the status or the value of the device.

If the device concerned is a Digital output or a Flag bit, no window will appear, but the status of the device
will be automatically changed. If the output is functioning correctly, the LED indicating its status will change
colour.

If the device concerned is an Output port, point the mouse on the LED corresponding to the required output
and double click on it to change its status.
The same applies to Flag switch and Flag port.

As far as Analog outputs, Timers and Counters are concerned, a dialog window is displayed, showing the
current value and enabling to set immediately the new value we want applied to the device.

Axes interaction modes are described in the Manual Axes movement paragraph.

5.5 List of navigation keys to navigate through a tree structure

Key Description
Up arrow
Down arrow

moves the selection to the immediately previous row or to the following one

Right arrow expands the selected branch to an extra level and, if already expanded, moves
the selection on the next branch

Left arrow collapses the selected branch and, if already collapsed, transfers the selection on
the previous branch

+ expands the selected branch to one level
- collapses the selected branch
* expands all the levels of the selected branch
Ctrl+Alt+Shift and
Enter

Shows the linearity corrector tables associated to an axis. If the key combination
is activated, while an axis is selected in the device tree of a module, all the
correctors associated to an axis appear, as if they were a matrix, in which the

Albatros12

Numeric control

Key Description
Ctrl+Alt+Shift and
left click

columns are the associated axes (the first column is that of the self-correctors)
and rows are the correction values. Any modified values are taken during the
axis movement, but are not memorized on the disc.

5.6 Linearity correctors

In diagnostics, we can view and edit the linearity correctors of a selected axis by opening the context menu
and selecting the option Linearity correctors. The option is only visible if some linearity correctors were
defined for the axis in the configuration. As an alternative to the menu, we can use the key shortcut
[Ctrl+Shift+Enter].

5.7 Axis calibration control board

The axis calibration control board allows to modify axis configuration parameters and, at the same time, to
move the axes and see its behaviour displayed on a virtual oscilloscope.
To access the axis calibration control board you need an access level to the main system or an access level as
"Manufacturer". The calibration board is accessed in diagnostic or manual mode by double clicking on the axis
to be calibrated while keeping the [shift] key pressed or from the context menu by selecting "Calibration".
The calibration control board shown in the following figure will be displayed:

To verify the axis behaviour as parameters change, the axis is moved continuously between two limit positions
called Positive Position and Negative Position. As well as these parameters, axis movement Speed will
also have to be set. In the early stages of calibration we suggest using a low speed value. A Delay, to be
applied between movements, can also be fixed.

The oscilloscope window will display the axis loop error graph or one of the other axis values. It is possible, as
with bench oscilloscopes, to scale the graph to adapt it to the size of the window and to examine it in detail. By
means of a mouse or control keys and buttons you can examine the last calibration minute again, display one
or two cursors to measure and check on the sampled data, enlarge an area of the graph to analyse the details
of the sampled data, change the offset and the scale both in the x and y-coordinates. Moreover graph scrolling

Diagnostics 13

Numeric control

can be interrupted by pressing the Stop button, to allow a careful study of the graph without having to stop
the axis.
Besides the graph, two boxes showing (on the left) the real position and (on the right) the size displayed
graphically. This can be set using the combo box situated above the display box.

To change the parameters of the axes, press the [Parameters…] button, which activates a window where
most axis parameters can be edited directly. Once a change has been made to one or more parameters, it can
be activated by pressing the [Apply] button.
This buttons allows seeing immediately the effect tha change has on the dynamic behaviour of the axis. If you
press [OK] the changes remain in use; if you press [Cancel], the values available before opening the
[Parameters…] window are restored.

The main parameters to be operated on are the following:
· Proportional coefficient
· Integral coefficient
· Derivative coefficient
· Feed Forward: percentage of current speed provided directly by operation (independent of loop error)
· Feed Forward Acceleration: percentage of speed reference provided directly by operation during axis

acceleration and deceleration phases (in addition to feed forward)
· Acceleration: time of acceleration ramp
· Deceleration: time of deceleration ramp

The cursor in the graphical area

The cursor is a tool that lets us measure and view some trace data. It consists of a vertical line of the colour

associated to the selected trace. You can move it within the chart by means of the cursor keys or by means of

the mouse. In a tooltip associated with the vertical line you can display different values selectable from a

popup menu that can be recalled by right-clicking next to the cursor.

In the popup menu you can choose the following options:

· Channel: it shows the list of the traces displayed in the chart and highlights by a visible check the one
the cursor is referencing. Furthermore, you can select a new trace to be associate with the cursor.

· Style: it shows a list of data that can be displayed in the tooltip rectangle.
· Value X-Y: it shows the value on the x axis and on the y axis of the trace point on which the cursor is.
· Value X: it shows the value on the x axis of the trace point on which the cursor is.
· Value Y: it shows the value on the y axis of the trace point on which the cursor is.
· Period: it shows the value of the distance between two shown cursors, when measured along the X axis.
· Peak-peak: it shows the value of the distance between two shown cursors, when measure along the Y

axis.
· Frequency: it shows the inverse of the distance along the X-axis.
· Options: it configures the display mode of the cursor and its associated tooltip.
· Use Channel Color: if enabled, the cursor is drawn in the colour of the sampled reference datum,

otherwise the choice of the cursor colour is random.
· Hide Hint On Release: if enabled, the tooltip is shown only until the left mouse button is held, then it is

hidden.
· Flip Alignment: the tooltip is normally displayed right of the cursor; if the option is enabled, the cursor is

displayed left of the cursor.
· Snap to Data-Point: if enabled, it places the cursor only on sampled values.

Axis Calibration
Axis calibration is a delicate operation to be carried out with great care and caution.

Through the "CalibSampleTime" option in the [Albatros] unit in Tpa.ini, you can modify the data sampling time
of an axis for the calibration window. The value in milliseconds and cannot be less than the frequency value of
the control axis or less than 100.

Before calibrating the axes from the control board, set all the parameters in configuration and set the full-scale
value for drive speed. The voltage value for the analog axes is 9 V which in Albatros corresponds to the
maximum speed.

Albatros14

Numeric control

To avoid damaging the machine by setting incorrect parameters, it is advisable to set a low speed, for example
the equivalent of 10% of axis maximum speed. This will avoid excessively violent reactions of the axes, even
when the gain is set too high.

Normally, the machine is calibrated first for point to point movements and then for interpolation movements.

The first step, if it has not been done in configuration, is setting the acceleration and deceleration times. The
longer the time, less will be the acceleration to which the axis is submitted.

The second step is setting a minimum gain, that allows axis movement. This is necessary to verify the correct
drive calibration. Albatros is set to provide a reference of 9 volts when it reaches the maximum speed set in
axis configuration. For example, if the axis is moved at a speed corresponding to 10% of maximum speed, and
if the drive is calibrated correctly, the reference power should be 10% of maximum power, that is 0.9 volts. If
this reference voltage is not obtained, the drive's full-scale value must be modified.

When the drive has been calibrated, we begin to increase the position loop gain, a little at a time and with
great caution. Each time the position loop is increased, we must check that this has not caused conditions of
excessive deflection or instability. In this phase, speed must be kept at 10% of maximum speed, or less, at all
times. Moreover, it is always advisable to analyse the obtained speed profile carefully with the virtual
oscilloscope, enlarging the image as much as possible to highlight the details.

When stable and ready axis performance has been obtained, the speed can be gradually increased. Check axis
behaviour each time the speed is modified. The value of the gain must also be modified if it is not satisfactory.
Gain and speed must never be increased abruptly, as apparently stable calibration conditions at a low speed
may not be as stable at a higher speed.

When the optimal value of the Gain has been determined, if necessary, Integrative and Derivative coefficients
and then the Feed Forward may be gradually increased to reduce the loop error, bringing it within acceptably
precise values. The feed forward allows to eliminate the loop error almost completely during movement, but
not during acceleration and deceleration. To further reduce the loop error in these phases, Feed Forward
Acceleration can be increased. Normally, even very low values in this parameter are sufficient for satisfactory
results.

As far as the axis calibration for interpolation movements is concerned, the same values set for point to point
movement can be used, although the other axes of the machine must be taken into account. It is particularly
important to balance the axis loop errors to obtain maximum precision during interpolation movements. This
means that once the axis with the greatest loop error (at equal speed) has been identified, the calibration of
the others must be adapted (limitedly to the interpolation parameters) to obtain identical loop errors.

Errors and Notifications 15

Numeric control

6 Errors and Notifications

6.1 Introduction

Albatros manages error events and notifications

System errors
These are errors that Albatros system is able to automatically detect, both during program execution phases
and during maintenance operations and plant diagnostics.

These include all kinds of errors, ranging from problems related to axis management to those that can arise
during the program execution.

System errors can be managed inside the working programs, by means of the ONERRSYS instruction.
If this is not possible, program execution of the module where the error occurred is terminated. The
explanation of each system error is described in the following pages of this manual.

Cycle errors
These are errors that occur during program execution, but that generally allow it to continue after removing
the error itself. Cycle errors can be generated through GPL ERROR instruction.

Messages
These are warning messages that are generated in anomalous situations during program execution or
notifications of help requests from the operator. However, they do not stop the execution of the program itself.
Messages can be generated through GPL MESSAGE instruction.

Notifications
These are generic notifications not related to the machine loop and that are written by Albatros. They are not
displayed in Albatros. The description of each notification is available in the following pages of the current
manual.

Error Bar
The latest system error that occurred in chronological order is displayed in the error bar, together with the last
cycle error and the last message.
System errors are indicated in red.
Cycle errors are indicated in yellow. These are errors occurring during program execution, which, however,
usually allow it to continue after removing the error itself.
Messages are indicated in green.

Error Bar

The errors occurred from booting are displayed in a window opened either by double clicking on the Error Bar
with the mouse or from the View menu. Additional information about system errors is also displayed in this
window.

The window is divided into the following areas. In the upper part the following information is displayed:
· Type: identifies the type of error (system error, message and cycle error).
· Hour&Date: hour and date in which the error occurred.
· Description: description of the error.
· Code: number of error message.
· Task: name of the task generating the error (not present in Error Bar).

By double clicking on one of these columns, the information is sorted according to the content of the column.
The bottom part contains the cells:

· Cycle Errors: if this cell is enabled, cycle errors are also displayed.
· Messages: if this cell is enabled, messages are also displayed.
· All: if enabled, it lists all the messages, sent by any module of the system, concerning the type of

information displayed.
· Module Name Cell: shows the name of the module whose information is being displayed. It also

allows to select, in case of multi-module systems, the module whose information is required.
The control buttons are:

Albatros16

Numeric control

· [Delete All] clears from memory all the information displayed, without deleting it from the file.
· [Delete] clears current information from memory, without deleting it from the file.
· [OK] closes window.

Storage of errors and notifications in a report file
All errors are stored in a file for a historical reconstruction of the same. It is a text file in TSV format. The file
name is MONTH (the current month number).TER. In the Albatros suite a ViewRER program is provided: it
loads and displays the .TER files.

6.2 System Errors

Errors generated by axes control6.2.1

1 AxisName: incorrect encoder connection

Cause:
The difference between the theoretical position of a still axis, and the real position of the axis, exceeded
1024 encoder steps.
This often happens during axis commissioning, when the encoder phases are reversed. During normal
functioning it occurs when an axis is moved manually, with the drive off, without setting the axis on FREE, or
when the axis is subject to overshoot in the arrival phase, due to inaccurate calibration.
When this error occurs, the reference signal is set to zero and the axis is set on FREE.

Solution:
During axis commissioning, check the connection of the axis' encoder phases (if necessary enable the
encoder phases inversion option in axis configuration).
Verify axis calibration using the specific Diagnostic mode.

2 AxisName: not ended movement

Cause:
When the move has concluded, 5 seconds after the end of theoretical movement, the gap between the
theoretical position and the real position of the axis exceeds the window indicated in Configuration. This
could be simply because the drive is off or disabled or it could be due to inaccurate drive offset regulation.
However, it could also be due to mechanical backlash on the axis or an excessively low axis position loop
gain.

Solution:
Check that the drive is on and enabled. Verify axis calibration and adjust the drive offset of the concerned
axis.

3 AxisName: servoerror

Cause
In any type of movement, the difference between the theoretical position and the real position of the axis
exceeded the maximum error indicated in Configuration or set with the SETMAXER instruction.
Normally this is due to the incorrect setting of the position loop gain or of the full-scale value of operation
speed. It could also depend on excessive axis inertia.

Solution:
Verify the gain setting and the full-scale value of drive speed.
Check that the encoder and the motor/drive group are functioning correctly.
Check for any mechanical block.

4 AxisName: limit switch positive

Cause:
The theoretical position of the axis exceeded the positive position limit indicated in Configuration or set using
the SETLIMPOS instruction.

Solution:
Correct in the program the position exceeding the positive position limit or set new axis position limits.

5 AxisName: limit switch negative

Cause:
The theoretical position of the axis exceeded the negative position limit indicated in Configuration or set
using the SETLIMNEG instruction.

Errors and Notifications 17

Numeric control

Solution:
Correct the position exceeding the negative position limit in the program or set new axis position limits.

10 AxisName: the Real-Time execution is faster than the profile construction

Cause
The real-time execution of the movement profile goes faster than the GPL generation of the profile itself. The
lookahead is emptied faster than its filling. The error might be due to two generally simultaneous causes:
· the interpolation speed rate is too high with respect to the segment dimensions to be covered.
· the segments to be covered are too short.

Solution:
Verify that the interpolation rate speed set is not too high with respect to the segment dimensions to be
covered; furthermore, verify that the interpolation segments to be covered are not too short.

Errors generated by remote I/O6.2.2

2049 Receiver number: incorrect configuration

Cause:
The remote receiver received a different I/O expansions configuration from the one detected on the field.
This can happen, if the remote is not equal to the one chosen in the hardware configuration of Albatros. For
example, the remote receiver is an Albre16 and in Albatros a remote ALbre24 (GreenBus v3.0) or another
TRS-IO with a wrong TRS-IO-E expansion number (GreenBus v4.0) has been configured.

Solution:
Verify Hardware configuration.

2050 Receiver number: disconnected

Cause:
The remote receiver does not respond to the transmitter's commands.

Solution:
Verify the receiver's power supply and the serial connection.

2051 Receiver number: reconnected

Cause:
The connection between the transmitter and the receiver has been restored.

2052 Receiver number: error reading Output not connected (number OutputNumber)

Cause:
The indicated digital output is in protection or in short circuit status, however, it is not in the status expected
by control. The output is not associated to any logic device in Virtual-Physical Configuration, which indicates
an incongruity between Configuration and the real cabling of the machine.

Solution:
Verify Virtual-Physical Configuration. Remove short circuit or verify that the applied load does not exceed
maximum limits (consult technical documentation).

2054 Receiver number: wrong type

Cause:
During remote initialization, a different receiver from the one specified in configuration has been detected at
a certain address.

Solution:
Verify that the Hardware Configuration agrees with the remote module setting.

2055 Receiver number: initialized

Cause:
The receiver has reconnected to the transmitter after an interruption caused by a power fail.

Albatros18

Numeric control

2056 Receiver number: +24 VDC power fail

Cause:
The field power (+24 VDC) of a I/O remote module is not active or is not correctly working.

Solution:
Check the +24 VDC power supply.

2057 GreenBus power fail

Cause:
The field bus power supply, connecting the I/O modules with the control, is not working properly. This power
supply should have a nominal value of +12 Vcc and it is supplied by the control.

Solution:
Check the presence of the GreenBus power line, check the GreenBus cables. Switch-off and switch back on.
If necessary, replace the control board.

2058 Receiver number: error reading DeviceType DeviceName

Cause:
The status of the specified output does not correspond to the set status. This could be due to a short-circuit,
to overload protection or simply to the lack of power. The specified output can be a digital output, an analog
output, an axis control output. The kind of output is specified in the error view.

Solution:
If it is a digital output, verify the +24V power supply (field side), remove the possible short circuit or the
excessive output adsorption (see technical documentation). If it is an analog output or a axis control output,
verify the presence and the value of the voltage set at the output (tester or oscilloscope), remove the
possible short circuit or the excessive output adsorption (see technical documentation).

2059 Test failed on dual port memory of transmitter

Cause:
An error was generated during axis board initialization tests. Namely, initialization of the GreenBus
transmitter (i296 microcontroller) failed. This could be due to the incorrect configuration of the board I/O
and IRQ addresses or to conflict with other peripherals in the system. It could also be the consequence of a
damaged axis board.

Solution:
Check the board configuration, check that there are no conflicts with other peripherals. If a remote module is
used, retransmit the firmware to the module. Qualified technicians can test the Hardware of the i296
microcontroller dual port memory. If the problem persists, contact the manufacturer.

2060 Error initializing transmitter

Cause:
An error was generated during axis board initialization tests. Namely, firmware transmission to the GreenBus
transmitter (i296 microcontroller) failed. This could be due to the incorrect configuration of the board I/O
and IRQ addresses or to conflict with other peripherals in the system. It could also be the consequence of a
damaged axis board.

Solution:
Check the board configuration, check that there are no conflicts with other peripherals. If a remote module is
used, retransmit the firmware to the module. Qualified technicians can test the Hardware of the i296
microcontroller dual port memory. If the problem persists contact the manufacturer.

2061 Error transmitting firmware to transmitter

Cause:
An error was generated during axis board initialization tests. Namely, transmission of the remote I/O module
configuration to the GreenBus transmitter (i296 microcontroller) failed.

Solution:
Verify hardware configuration, if a remote module is used, retransmit the firmware to the module. Qualified
technicians can carry out a Hardware test on the i296 microcontroller RAM. If the problem persists contact
the manufacturer.

Errors and Notifications 19

Numeric control

2062 Error transmitting configuration to transmitter

Cause:
An error was generated during axis board initialization tests. In particular, remote I/O modules initialization
failed.

Solution:
Verify the hardware configuration, if a remote module is used, retransmit the firmware to the module.
Qualified technicians can carry out a Hardware test on the i296 microcontroller RAM. If the problem persists
contact the manufacturer.

2063 Error transmitting configuration to receiver

Cause:
Error detected during initialization of a remote module.

Solution:
Verify the hardware configuration. Qualified technicians can carry out a Hardware test on the remote module.
If the problem persists contact the technical support service.

2064 Receiver number: Incompatible firmware version

Cause:
Remote receiver has a firmware version, that is not compatible with the controller's firmware.

Solution:
Check installation of controller. If the problem persists, please contact the technical support service.

2065 Receiver number: Error in an asynchronous communication

Cause:
There was an error or a non-response during the communication of a command with the remote (GreenBus
v.4.0).

Solution:
Check the connections and the GreenBus power supply. If the problem persists, please contact the technical
support service.

2066 Receiver number: Generic error

Cause:
There was a generic error while communicating an event or an alarm from a remote (GreenBus v4.0)

Solution:
Check the connections and the GreenBus power supply. If the problem persists, please contact the technical
support service.

2067 Receiver number: Error while transmitting the configuration

Cause:
A communication error while transmitting some configuration data to a remote (GreenBus v.4.0) occurred.

Solution:
Check the connections and the GreenBus power supply. Switch-off and switch back on. If the problem
persists, please contact the technical support service.

2068 Receiver number: Internal error n. errornumber

Cause:
An internal error on the indicated remote has occurred.

Solution:
Please, contact the Manufacturer.

Albatros20

Numeric control

2069 Receiver number: +24 VDC power fail in bank number

Cause:
Field power supply (+24 VDC) of a output group connected to the same feeding clamp is not active or does
not work correctly.

Solution:
Check the +24 VDC power supply.

Errors generated by MECHATROLINK-II6.2.3

2308 Board BoardNumber: The initialisation failed due to an incorrect setting of a
configuration parameter

Cause:
In virtual physical Configuration any axis (logical device) was not connected to the board with
MECHATROLINK-II bus (physical device).

Solution:
Check the links in Virtual-physical Configuration.

2341 Board BoardNumber: The number of servodrives exceeds the maximum number
allowed

Cause:
A number of servo-drives, exceeding the configuration set, was connected to a MECHATROLINK-II bus.

Solution:
Check the Axis Control Frequency value in system configuration.
In the table below the right values to be set according the number of servo-drives controlled by the board:

Board Frequency Axis Control (Hz) Maximum Number of servo-drives

AlbMech 1000 8

AlbMech <=500 16

DualMech Mono 1000 8

DualMech Mono 500 20

DualMech Mono 250 30

DualMech 1000 16

DualMech 500 40

DualMech 250 60

2342 Board BoardNumber: The hardware address of servodrive Servo exceeds the
maximum value allowed

Cause:
An axis (logical device), whose hardware address (physical device) is higher than the number of the servo-
drives, that can be controlled by the board, has been connected to a MECHATROLINK-II bus.

Solution:
Check in system configuration the Axis Control Frequency value. In the table below the right values to be set
according the number of servo-drives controlled by the board:

Board Axis Frequency Control (Hz) Maximum Number of servo-drives

AlbMech 1000 8

AlbMech <=500 16

DualMech Mono 1000 8

DualMech Mono 500 20

DualMech Mono 250 30

Errors and Notifications 21

Numeric control

DualMech 1000 16

DualMech 500 40

DualMech 250 60

Check in Physical-Virtual Configuration the connection between logical device and physical device. For
example, if the maximum number of servodrives is 8, so the connection between logical and physical device
must included among the first 8 axes (from Ax1 to Ax8).

2349 Board BoardNumber: Servodrive Servo not connected

Cause:
Physical connection to the servo-drive of the indicated board is interrupted.

Solution:
Check servo-drive and MECHATROLINK-II bus cabling.

Errors generated by the CanBUS control6.2.4

2761 Node number: disconnected

Cause:
The CAN node shown seems currently not to be plugged to field bus, that makes reference to the board
shown, although it is included in the configuration.

2762 Node number: reconnected

Cause:
The CAN node shown seems to be just plugged to field bus, that makes reference to the board shown.

2763 Error: missing transmission

Cause:
Error inside the indicated board. Data transmission to the indicated Can node failed.

Solution:
Please, contact the Manufacturer.

2764 Node number: Error of non-reception

Cause:
Data reception from the CAN node failed.

Solution:
Check connection and power supply of the indicated CAN device. Check the cabling of the whole CAN line.
Check line connection to the numeric control. Check coherence in the protocol settings of the indicated
device CAN in respect of transmitter settings in the numeric control (baud rate, address, specific settings of
the adopted protocol)

2765 Node number: Initialized

Cause:
The CAN node shown has been plugged to the field bus, and then it has been properly initialized.

2766 Fault condition on CAN interface

Cause:
An internal power supply failure of the CAN Interface device is reported.

Solution:
Please, contact the Manufacturer.

2767 CANopen status loss

Cause:
Because of a serious problem CAN transmitter is not operational anymore (Operational).

Solution:
Please, contact the Manufacturer.

Albatros22

Numeric control

2768 Node number: Error of PDO non-reception

Cause:
The numeric control did not receive the PDO, which was expected from CAN node.

Solution:
Check as follows:

· node supply.
· node has remained in pre-Operational mode.
· PDO and CAN bus data as configured in Albatros.

2769 Node number: Error receiving a non-configured node

Cause:
On the CAN network a node has been detected. It was not declared in the hardware configuration of
Albatros.

Solution:
Check the node hardware address and the address of the node set in the hardware configuration.
Check that the node was declared in the hardware configuration, otherwise it is necessary to add it.

2770 Node number: Wrong configuration

Cause:
The RPDO and TPDO data description is wrong.

Solution:
Correct the PDO data description of transmission and reception in the hardware configuration.

2771 Node number: SDO communication error

Cause:
This CAN node did not respond in an asynchronous communication (SDO).

Solution:
Check the connection status of the node. If the problem persists, please, contact the Manufacturer.

2772 Timeout on querying nodes CAN cycle

Cause:
A timeout error on CAN cycle of node querying occurred

Solution:
In the hardware configuration change the value of the set sampling time.

3073 Node number: Emergency error n. ErrorNumber

Cause:
CANopen device has detected an error situation of the node, specified by the displayed code.
The error code is a hexadecimal number.
It is a matter of error situations pertaining to a single node and meeting with the standard CiA DS301-
EMERGENCY protocol.

Solution:
Please, make reference to the node documentation.

3074 Node number: Generic CAN error n. ErrorNumber

Cause:
An internal error on the indicated node has occurred. The error code is a hexadecimal number.

Solution:
Please, contact the Manufacturer.

3088 CAN Board number: node NodeNumber: SDO communication error nr.
ErrorNumber - description

Cause:
In a READDICTIONARY or WRITEDICTIONARY instruction, one or more requests for SDO read/write failed.
The failure of the instructions can be caused, for example, by the read request of a CANOpen object that is

Errors and Notifications 23

Numeric control

not implemented in the device to which we are referring to. Or it can be related to the write, in a CANOpen
register, of a data, that is not compatible with the object type (for example: writing attempt of a string into
an object whose type is integer). The provided error code complies with the DS402 specifications and the
textual description is also provided, in addition to the numerical code.
The error code is a hexadecimal number.

Solution:
Check the parameters correctness of BaudRate, Sampling time, etc., set in the hardware configuration and
the parameters of possible READDICTIONARY and/or WRITEDICTIONARY instructions which are in the GPL
code.

Errors generated by bus EtherCAT control6.2.5

3329 Error in the communication socket initialization

Cause:
The firmware could not communicate with the network board.

Solution:
If the board has been configured in a RTX System, check that the .ini files existing in the Albatros FW
subfolder are properly written. To check the syntax of the files, refer to the RTX installation manual in
Albatros (InstallationRTXGuide.pdf).

3330 Error during the EtherCAT network scan

Cause:
While pre-scanning the EtherCAT network, the master did not receive any answer from some or from all the
configured slaves or the configuration does not match with the real EtherCAT network available in the field.

Solution:
Check the cabling between the EtherCAT master and the slave.
Check the descriptions of the devices in the hardware configuration. Hardware Diagnostic window can help to
find the error. Here, the existing nodes are displayed and, if wrongly configured, besides the device name
found, the name of the expected device is displayed.

3331 Error in the configuration of the transmission mailbox

Cause:
The EtherCAT node has not responded to the command given by the Master. Potential causes: absent
communication, faulty node...

Solution:
Check the cabling and the remote operation.

3332 Error in the configuration of the receive mailbox

Cause:
The EtherCAT node did not respond to the command given by the Master. Possible causes: absent
communication, node failure...

Solution:
Check the cabling and the remote operation.

3333 EtherCAT board number: Error in the expansion type of node NodeNumber

Cause:
The type of expansions configured on an EtherCAT node in the hardware configuration does not correspond
to the kind of the expansions actually present. (For example, in the hardware configuration a TRS-CAT has
been defined with a TRS-IO-E expansion, while in the system a TRS-CAT is available with a TRS-AN-E
expansion).

Solution:
Check that the devices set in the hardware configuration correspond to those available.

Albatros24

Numeric control

3334 Error during the PDO configuration

Cause:
The EtherCAT node, for which you tried to configure the PDOs, is not available on the network or has a
failure.

Solution:
Check that the EtherCAT network configuration, described in the Albatros configuration, corresponds to the
network physical configuration.

3335 Node NodeNumber in alarm (ErrorNumber)

Cause:
The indicated node is in an alarm situation.

Solution:
Check the alarm code in the following table

Alarm code Description

0x0001 Unspecified error

0x0002 No memory

0x0011 Invalid requested status change

0x0012 Unknown requested status

0x0013 Bootstrap not supported

0x0014 No valid firmware

0x0015 Invalid mailbox configuration

0x0016 Invalid mailbox configuration

0x0017 Invalid sync manager configuration

0x0018 No valid inputs available

0x0019 No valid outputs

0x001A Synchronization error

0x001B Sync manager watchdog

0x001C Invalid Sync Manager Types

0x001D Invalid Output Configuration

0x001E Invalid Input Configuration

0x001F Invalid Watchdog Configuration

0x0020 Slave needs cold start

0x0021 Slave needs INIT

0x0022 Slave needs PREOP

0x0023 Slave needs SAFEOP

0x0024 Invalid input mapping

0x0025 Invalid output mapping

0x0026 Inconsistent settings

0x0027 Free-Run not supported

0x0028 Synchronization not supported

0x0029 Free-Run needs 3 buffer mode

0x002A Background watchdog

0x002B No valid inputs and outputs

0x002C Fatal Sync error

Errors and Notifications 25

Numeric control

0x002D No Sync error

0x0030 Invalid DC SYNCH Configuration

0x0031 Invalid DC Latch Configuration

0x0032 PLL Error

0x0033 Invalid DC IO Error

0x0034 Invalid DC Timeout Error

0x0035 DC Invalid Sync Cycle Time

0x0036 DC Sync0 Cycle Time

0x0037 DC Sync1 Cycle Time

0x0041 MBX_AOE

0x0042 MBX_EOE

0x0043 MBX_COE

0x0044 MBX_FOE

0x0045 MBX_SOE

0x004F MBX_VOE

0x0050 EEPROM no access

0x0051 EEPROM error

0x0060 Slave restarted locally

3336 EtherCAT board number: The expansion number of node NodeNumber is wrong

Cause:
The configured expansion number on an EtherCAT node in Albatros does not correspond to the number of
the present expansions. (For example, in the hardware configuration a TRS-CAT with two TRS-IO-E
expansions has been defined, while only one expansion is available in the system).

Solution:
Check that the devices described in the hardware configuration correspond to those available.

3337 EtherCAT board: Node NodeNumber: Disconnected

Cause:
The EtherCAT node has not returned any response to the control. The node could be disconnected from the
network or it could be off.

Solution:
Check the cabling and the power supply to the node.

3338 EtherCAT board: Node NodeNumber: Reconnected

Cause:
The EtherCAT node indicated has been reconnected to the network and has started again to respond to the
control requests.

3340 EtherCAT board: Node NodeNumber did not respond to the request (Code)

Cause:
The EtherCAT node, queried using the SDO service, did not respond to the request. Furthermore, if the
device has provided an abort code, this is reported in the error message shown (code). This error may
appear during the execution of the SETPZERO, SETPFLY, and FASTREAD instructions on EtherCAT axes, since
they use SDO communication for drive configuration. In this specific case, in addition to the standard abort
codes, the error message can contain the following codes:

· 1 Internal Timeout expired: the node did not respond within 250 ms.
· 00000005: internal index of incorrect mailbox.
· 00000006: data received not compliant with the request.

Albatros26

Numeric control

Solution:
Contact the manufacturer.

3341 EtherCAT board: Node NodeNumber does not exist

Cause:
A not-existing node was asked to perform a command.

Solution:
Check the node number in the GPL instruction, that generated the error.
Connect the node.

3342 Disconnected cable

Cause:
The EtherCAT cable is not connected to the control.

Solution:
Check that the cable is correctly connected to the control and that it is not damaged.

3343 EtherCAT board number: Node NodeNumber does not switch to the
SAFE-OPERATIONAL status (Code)

Cause:
The indicated EtherCAT node did not switch to the SAFE-OPERATIONAL status.

Solution:
Contact the manufacturer and report the indicated error number (code), which represents the ALstatuscode
code.

3344 EtherCAT board number: Node NodeNumber does not switch to the
OPERATIONAL status (Code)

Cause:
The indicated EtherCAT node did not switch to the OPERATIONAL status.

Solution:
Contact the manufacturer and report the indicated error number (code), which represents the ALstatuscode
code.

3345 EtherCAT board: Unstable communication

Cause:
The communication on the EtherCAT network is unstable due either to interferences or cables or faulty
nodes.

4400 Too many active axes in FASTREAD (Function:NameFunction line:NumberLine)

Cause:
There was an attampt to use a FASTREAD instruction with a number of axes higher than the number allowed.
It is necessary to keep in mind that the axes equipped with additional encoder correspond to a double axis
(please see the instruction SWITCHENC).

Solution:
Reduce the number of axes used with additional encoder.

Errors and Notifications 27

Numeric control

Errors generated by initialization6.2.6

769 Error in software configuration

Cause:
The hardware configuration of the remote module does not match the software configuration specified in the
system configuration.

Solution:
Please, check that the hardware parameters of the remote module and the software parameters are
congruent to each other.

770 Wrong IRQ number in configuration

Cause:
The IRQ of the axis board has not been set correctly in the Module configuration. Normally a hardware
conflict with other peripherals in the system is the cause.

Solution:
Verify in the motherboard BIOS settings that the IRQ used by the axis board is reserved for "Legacy ISA"
only. Verify that no other peripherals are using the same IRQ assigned to the axis board. If possible, modify
the IRQ of the peripheral in conflict with the axis board, otherwise modify the axis board IRQ.

772 Error reading the buffer memory area while initialising

Cause:
An error was generated during axis board initialization tests. Namely, the buffered RAM (Dallas) test failed.
This could be due to the incorrect configuration of the board I/O and IRQ addresses or to conflict with other
peripherals in the system. It could also be the consequence of a damaged axis board.

Solution:
Verify the hardware configuration. Qualified technicians may carry out a Hardware test on the i296
microcontroller RAM. Notice that the RAM Hardware test implies clearing all the data saved in it. The buffered
RAM contains the values of certain devices, such as counters, timers and axis DAC offsets.
Save these values before running the test.
If the problem persists, please contact the manufacturer.

773 Reached maximum number of axes in configuration

Cause:
An attempt to configure more axes than allowed.

Solution:
Reduce the number of axis to be configured. For further information, please contact the Manufacturer.

774 Axis Real-Time is not running

Cause:
The axes management firmware was initialized but is not functioning properly. Normally, a hardware conflict
with other peripherals in the system is the cause.

Solution:
Check that there is no conflict with other peripherals. Change the configuration of the peripherals causing the
conflict or remove these peripherals from the system.

775 No time left to run GPL

Cause:
The execution of a real-time task takes up too much cycle time. This is generated when a real-time task does
not end before the start of the next axis real-time task (for example when an infinite cycle has been
created).

Solution:
Change the GPL code so as to reduce the length of the real-time task.

Albatros28

Numeric control

776 Real-Time execution time too long

Cause:
The execution of a real-time task takes up too much cycle time. The execution time is slightly over the
maximum allowed.

Solution:
Change the GPL code so as to reduce the length of the real-time task.

777 Watchdog expired

Cause:
The firmware is stuck.

Solution:
Please, contact the Manufacturer.

778 Main firmware code is blocked

Cause:
The firmware has crashed for more then 5 real-times.

Solution:
Please, contact the Manufacturer.

1025 Board BoardNumber: It does not respond to command number

Cause:
An axis board was detected during initialization, but it does not respond correctly to commands.

Solution:
Qualified technicians can carry out a Hardware test on the axis board. If the problem persists, please contact
the constructor.

1026 Board BoardNumber: Error transmitting firmware to the axis board

Cause:
Impossible to send the firmware to the board.

Solution:
Contact the manufacturer.

1028 Board BoardNumber: Firmware not present

Cause:
The firmwares on board are not correct for the type of board detected.

Solution:
Transmit the correct firmware.

1029 Board BoardNumber: Main blocked

Cause:
The firmware of the board did not start to run.

Solution:
Contact the manufacturer.

1031 Board BoardNumber: Initialization error

Cause:
An error was generated during initialization process of axis board.

Solution:

Errors and Notifications 29

Numeric control

Check and fix the causes of the system errors occurred in the moments before the occurrence of the current
error. Then initialise the system.

1032 Board BoardNumber: Dual port memory test failed

Cause:
An error occurred while testing in the initialization phase of the axes board. More particularly, the
initialisation of the dual port memory failed.
This is typically due to a hardware conflict with other peripheral devices present in the system, but it could
also depend on a damaged board.

Solution:
Check the board configuration, check that there are no conflicts with other peripheral devices. If a remote
module is used, retransmit the firmware to the module. Qualified technicians can carry out a Hardware test
on the dual port memory. If the problem persists, please contact the Manufacturer.

1033 Board BoardNumber: Firmware Boot code is not running

Cause:
The booting firmware was initialized but is not working properly. This is typically due to a hardware conflict
with other peripheral devices in the system.

Solution:
Check the board configuration, check that there are no conflicts with other peripheral devices. If a remote
module is used, retransmit the firmware to the module. Qualified technicians can carry out a Hardware test
on the dual port memory. If the problem persists, please contact the Manufacturer.

1035 Board BoardNumber: Not present

Cause:
An error occurred while testing in the initialization of the axes board. More particularly, the board was not
detected.

Solution:
Check that the board is actually in the system and that it is not damaged. Qualified technicians can perform a
Hardware test of the board. If the problem persists, please contact the Manufacturer.

1037 Board BoardNumber: Failed to open the dual port memory

Cause:
Failed to open the dual port memory board.

Solution:
Qualified technicians can perform a Hardware test on the board. Please, contact the manufacturer.

1039 Board BoardNumber: Watchdog expired

Cause:
The firmware of the BoardNumber axes board is blocked.

Solution:
Contact the Manufacturer.

1040 Board BoardNumber: +24 VDC power fail

Cause:
There is not any field power supply (+24 VDC) of the outputs or it is not working properly.

Solution:
Check the +24 VDC field power.

Albatros30

Numeric control

1047 Board BoardNumber: Software configuration not allowed

Cause:
The device has received a configuration that is not compatible with the hardware in use or enabled. For
instance, the configuration of an axis that is not enabled or not present on the device is required.

Solution:
Check that the board hardware parameters correspond to the software ones.

1052 Board BoardNumber: Boot code is running

Cause:
The board is in set in Safe mode and it is running the boot code.

Solution:
Please contact the Manufacturer.

1053 Board BoardNumber: Axis Watchdog expired

Cause:
A serious error while executing the firmware of the axis control board occurred. Axes are disabled and the
SYSOK signal, if any, is lowered. Do not reset the system.

Solution:
Please contact the Manufacturer.

1055 Watchdog expired for board BoardNumber

Cause:
The firmware of the board BoardNumber is blocked.

Solution:
Contact the Manufacturer.

1056 Board BoardNumber: CAN interface power failed

Cause:
Power supply of the transmission device on CanBus line in the indicated board failed. It can depends on a
short circuit, on a bus cabling error or on a damaged board.

Solution:
Check the cabling of the whole CAN line. Check the line connection to the numeric control. Remove the
presence of any short circuit. If communication is not restored, contact the manufacturer.

1057 Board BoardNumber: Internal error n° ErrorNumber

Cause:
Error in the hardware of the node.

Solution:
Please contact the Manufacturer.

Errors generated by memory management6.2.7

1281 Error in the memory allocation on the heap area

Cause:
Available RAM memory is not sufficient to satisfy the requirement, for example, of a global matrix.

Solution:
Reduce the size of the global variables allocated in RAM.

1286 Error handling heap

Cause:
Error in the firmware's memory handling.

Solution:

Errors and Notifications 31

Numeric control

Please contact the Manufacturer.

1287 Too many memory deallocations from the heap

Cause:
Firmware made an error while managing the memory.

Solution:
Please contact the Manufacturer.

1289 Error creating global variables

Cause:
Too many global variables were defined, or the defined global matrixes are too large.

Solution:
Reduce the number of global variables or the size of the matrixes.

1290 Error in the dimension of non-volatile variables

Cause:
Too many non volatile variables were defined, or the defined non volatile matrixes are too large.

Solution:
Reduce the number of non volatile variables or the size of the non volatile matrixes.

1291 Error in the dimension of read-only variables

Cause:
Too many read only variables were defined, or the defined read only matrixes are too large.

Solution:
Reduce the number of read only variables or the size of the read only matrixes.

Errors generated by faults6.2.8

1559 Breakpoint Trace

Cause:
Serious firmware error.

Solution:
Please contact the Manufacturer.

1569 Invalid microprocessor operating code

Cause:
The microprocessor has encountered an unknown instruction. This could either be due to PC hardware
problems or the files containing Albatros firmware could be damaged.

Solution:
In the case of a local module, check that the files are not damaged and try reinstalling Albatros. In the case
of Clipper modules, update the firmware. Run a PC hardware test, especially on the RAM. If the problem
persists, please, contact the Manufacturer.

1586 INTEGER value divided by zero

Cause:
An attempt to divide an INTEGER by zero.

Solution:
Please check that all the divisions in the GPL functions are correct.

Albatros32

Numeric control

1600 Overflow in the result of a floating point operation

Cause:
The result of an operation between FLOATs is greater than the capacity of the recipient:

± 3,402823E+38 for floats
± 1,79769313486231E+308 for doubles.

Solution:
Please check that the floating point calculations in the GPL functions are correct.

1601 Underflow in the result of a floating point operation

Cause:
The result of an operation between FLOATs is smaller than the capacity of the recipient:

± 1,401298E-45 for floats
± 4,94065645841247E-324 for doubles.

Solution:
Please check that the float calculations in the GPL functions are correct.

1602 Invalid argument in a floating point operation

Cause:
An operand different from float type was used in a float operation.

Solution:
Please check that float calculations in the GPL functions are correct.

1603 Floating point value divided by zero

Cause:
An attempt to divide a float or double by zero. Raised also when a logarithm of zero is executed.

Solution:
Please check that all the divisions in the GPL functions are correct.

1604 Incorrect result in a floating point operation

Cause:
The result of an operation between floats is incorrect.

Solution:
Please check that the float calculations in the GPL functions are correct.

1605 Incorrect value for a floating point data

Cause:
The use of a smaller floating point value than the minimum representable value:

± 1,401298E-45 for floats
± 4,94065645841247E-324 for doubles.

Solution:
Please check that float calculations in the GPL functions are correct.

1728 Attempt to get access to an invalid address

Cause:
The program accessed an invalid memory area.

Solution:
Please check the global/local variable congruity. If the problem persists, please report the anomaly.

Errors and Notifications 33

Numeric control

1735 Generic exception

Cause:
An unknown exception occurred.

Solution:
Please contact the Manufacturer.

1736 Data not aligned

Cause:
Serious error of the firmware.

Solution:
Please contact the Manufacturer.

1801 Temperature alarm

Cause:
Temperature of controller's CPU has exceeded maximum permissible limits.

Solution:
Please make sure there is no ventilation problem or anything causing overheating. If the problem persists,
please contact the technical support service.

1802 Fan alarm

Cause:
CPU fan of the control is not working properly. Problem can lead to CPU overheating in short time.

Solution:
Please contact the Manufacturer.

1803 Unstable CPU frequency

Cause:
CPU work frequency is not stable.

Solution:
Please contact the Manufacturer.

Errors generated by GPL instructions6.2.9

4097 The DeviceType device DeviceName is not configured

Cause:
A GPL instruction used a non-configured device, that is a device with no Virtual-Physical connection. It can be
generated by all the instructions to which a device is passed as parameter.

Solution:
Please check in the control configurations that all the devices used by the functions have a Virtual-Physical
connection.
Then retransmit configurations to the board.

4098 The global variable VariableName does not exist

Cause:
A GPL instruction received an undefined global variable as argument.
This usually happens when the control was not correctly initialized.

Solution:
Please recompile the whole GPL code and initialize control again.

Albatros34

Numeric control

4099 Function FunctionName not found

Cause:
An absent function was called.
It can occur when the control has not been initialized after modifying the GPL code.

Solution:
Please recompile the whole GPL code and initialize control again.

4101 Inconsistent management of axis AxisName

Cause:
An illegal status change was performed on an axis. For status changes consult the relative documentation.
The error could be generated by any of the instructions managing the axes, normally it occurs in the
following cases:

- if an attempt is made to interpolate, coordinate an axis already occupied in a point-to-point movement
(or vice versa).

- if a Chain, SetPFly or SetPZero instruction is executed on an axis in transparent mode.
- if an attempt is made to interpolate, coordinate a slave axis.

Solution:
Please check that all axis transfers end with a wait in position instruction, especially if the axes alternate
different types of movements (point-to-point, interpolation, etc.).

4105 Instruction not executable on axis AxisName

Cause:
An attempt to execute an instruction on an axis which does not support it. For example, an interpolation
instruction on a stepper axis.

Solution:
Please correct the GPL code.

4106 The remote module of the stepper axis AxisName is not connected

Cause:
An attempt to operate on a stepper axis that is not connected to the control.

Solution:
Please check the connection of the remote controlling the axis.

4107 SYSOK instruction has incorrect arguments

Cause:
A SYSOK instruction with incorrect arguments was executed. Verify whether one or more digital outputs
passed as instruction arguments are not correctly configured.

Solution:
Please check the GPL code and the Virtual-Physical configuration.

4108 AxisName: Final position beyond software limits

Cause:
An attempt to move an axis beyond the limits set in configuration or by the GPL code.

Solution:
Please correct the machining program that caused the error. If necessary, correct the GPL code or axis
configuration.

4110 Wrong speed

Cause:
An axis was assigned a null or negative speed.

Solution:

Errors and Notifications 35

Numeric control

Please correct GPL code.

4111 Negative Acceleration on axis AxisName

Cause:
An axis was assigned negative acceleration.

Solution:
Please correct GPL code.

4112 Negative Deceleration on axis AxisName

Cause:
An axis was assigned negative deceleration.

Solution:
Please correct the GPL code.

4114 Axis AxisName: reset on Fast Input not effected

Cause:
The Fast Input Reset (on the fly homing) was not completed correctly. This procedure enables to reset to
zero the position of a moving axis, the moment the corresponding fast input changes status. If the axis
concludes the movement in process with no input switching, the system error is generated. This could be due
to the incorrect setting of axis movement parameters or to a cabling problem in the fast input.

Solution:
Please check the GPL code implementing on the fly homing, check fast input cabling.

4115 Axis AxisName: zero pulse not found

Cause:
The encoder zero pulse reset was not completed correctly. This procedure enables to reset to zero the
position of a moving axis the moment the encoder 's zero pulse is detected. If the axis reaches the pulse
search position without detecting the zero pulse, the system error is generated. This could be due to the
incorrect setting of axis movement parameters or to a cabling problem in the pulse signal (axis connector C
phase).

Solution:
Please check the GPL code implementing pulse homing, check axis cabling.

4353 Unknown instruction code (Function:FunctionName line:LineNumber)

Cause:
An illegal instruction was detected during the execution of a GPL function. Generally this indicates that the
files containing the compiled GPL code are damaged. Verify also whether the control software and firmware
were updated without recompiling the GPL code, as the earlier version could contain instructions which are
no longer supported by the new one.

Solution:
Recompile the whole GPL code and initialize control. If the problem persists, please contact the Manufacturer.

4354 Incorrect mathematical operation (Function:FunctionName line:LineNumber)

Cause:
A GPL instruction tried executing an incorrect mathematical operation, such as dividing by zero. Or data
introduced in the GPL instruction is incongruent. This error is often generated by interpolation movement
instructions, as this is the Firmware that performs the most mathematical operations.

Solution:
Check that the data passed to interpolation instructions is correct. If the problem persists, please report the
problem to the Manufacturer.

Albatros36

Numeric control

4355 Incorrect address of matrix or vector (Function:FunctionName line:LineNumber)

Cause:
A GPL instruction tried accessing an array or matrix element exceeding maximum size. For example, it tried
accessing element 10 of a 5-element array.
It could be generated by any instruction accepting an array or matrix as a parameter.

Solution:
Please check that all the matrix and array indexes passed to the instructions are within the array and matrix
size.

4356 Instruction RET without CALL (Function: FunctionName line: LineNumber)

Cause:
A RET instruction was executed although the stack did not contain the relative return address. Declaring a
sub-procedure before the exit function FRET instruction, without protecting it with a GOTO to avoid
accidental execution, is the most frequent cause. It is also possible that an accidental jump occurred in a
sub-procedure.

Solution:
Please check the GPL program flow. When possible, place sub-procedures at the end of the body of the
function (after the FRET instruction).

4357 Local variable does not exist (Function:FunctionName line:LineNumber)

Cause:
A GPL instruction tried to access a local variable which was not allocated.

Solution:
Recompile and retransmit all board functions. If the problem persists, please report the problem.

4358 Jump label does not exist (Function: FunctionName line: LineNumber)

Cause:
A GPL instruction jumped to a non-existing jump label.
It can be generated by GOTO, CALL, FCALL and all IFs.

Solution:
Recompile and retransmit all the functions to the board. If the problem persists, please report the problem.

4359 Incorrect macro argument (Function:FunctionName line:LineNumber)

Cause:
A GPL instruction was passed invalid arguments. It can be generated by any instruction. However, in the
great majority of cases, the GPL system tries to correct the situation automatically, by performing automatic
type conversions (cast), which may imply wasting time. The error is generated when these conversions are
not possible and especially in the following cases:

- instructions operating on specific devices (SETTIMER, SETCOUNTER) that are given a different type of
device.

- instructions operating on bits that are given a floating point number (AND, OR, etc)
- instructions operating on matrixes or arrays that are given a simple variable (SORT, MOVEMAT, etc.)
- instructions that operate on strings that are not given strings.

The error is generated even when the system tries to carry out an instruction in a board that does not
manage such an instruction (for example an instruction SENDPDO or an instruction RECEIVEPDO in a board
that is not a TMSCan or a TMSCan+ board)

Solution:
Please correct the GPL code.

Errors and Notifications 37

Numeric control

4360 Error in the memory allocation during the execution (Function:FunctionName
line:LineNumber)

Cause:
The GPL function tried to allocate a region of memory for internal use, but did not find available memory.
The error could indicate a temporary situation, due, for example to an excessive number of tasks in
execution at the same time or to excessively large global variables.

Solution:
Please check the size of the global and local variables and if possible reduce their size. Check if too many
tasks are in execution at the same time and if necessary reduce them.

4361 Too many tasks enabled (Function:FunctionName line:LineNumber)

Cause:
An attempt to execute more than 256 tasks at the same time.

Solution:
Please reduce the number of tasks in execution at the same time.

4362 Incorrect matrix format (Function:FunctionName line:LineNumber)

Cause:
An instruction operating on matrixes has found an invalid format. The instructions that could generate this
error are the following:

- MOVEMAT if the format of the source matrix and the destination matrix do not correspond.
- CLEAR if a non-existing row of the matrix is being deleted.
- GETAXIS if the format of the matrix, passed as a parameter, does not correspond to the format

expected by the instruction (consult GPL language documentation).

Solution:
Check the above mentioned instructions in the task that generated the error. Check especially that the
matrixes passed to MOVEMAT have the same number of columns of the same type and that the matrix
passed to GETAXIS has the right format.

4363 Too many active ONINPUT instructions (Function:FunctionName
line:LineNumber)

Cause:
More than 128 OnINput instructions have been activated.

Solution:
Please reduce the number of ONINPUT.

4364 Axis already engaged with local reference (Function:FunctionName
line:LineNumber)

Cause:
The error concerns the activation of the rototraslate axis terns to execute interpolations on a number of
Cartesian axes.
There was an attempt to execute a SETRIFLOC passing to the instruction an axis that was already engaged in
a reference axis tern. It can also be generated if a RESRIFLOC is executed on an axis which is not engaged
in any axis tern. It is also possible that no reference terns were available (there can be a maximum of 32
terms).

Solution:
Check that the terns passed by the SETRIFLOC have no axes in common.
Check RESRIFLOCs.
Check that the RESRIFLOC is preceded by wait in position instructions.
Remember that the RESRIFLOC is not executed until the interpolation has concluded.

Albatros38

Numeric control

4365 Instruction ONINPUT activated on the same INPUT (Function:FunctionName
line:LineNumber)

Cause:
The same input was passed to an ONINPUT instruction more than once.

Solution:
Please check that the same input is not sent as a parameter to two ONINPUTs.

4366 Too many ONFLAG instructions active (Function:FunctionName line:LineNumber)

Cause:
More than 128 OnFlags instructions were activated.

Solution:
Please reduce the number of ONFLAGs.

4367 Instruction ONFLAG activated on the same FLAG (Function:FunctionName
line:LineNumber)

Cause:
An ONFLAG instruction was passed to the same flag more than once.

Solution:
Please check that the same flag is not passed as a parameter to two ONFLAGs.

4368 A ReadOnly variable writing has been attempted (Function:FunctionName
line:LineNumber)

Cause:
An attempt to write on a readonly variable.
Readonly variables are always global and reside in the command flash. They are indicated as "static" in the
global variables editor. If an attempt is made to write on one of these global variables this system error is
generated.
The error is also generated if variables residing in the buffered RAM ("non volatile") are used as arguments
of certain write instructions.
For instance, in the instruction COORDIN the variable passed to show the row being processed must be in
RAM.

Solution:
Please check all the static and non volatile variables.

4369 Too many master axes active (Function:FunctionName line:LineNumber)

Cause:
An attempt to activate more than four axes as master at the same time.
This error is only generated while executing the CHAIN instruction.

Solution:
Please reduce the number of master axes.

4370 Too many slave axes active (Function:FunctionName line:LineNumber)

Cause:
An attempt to activate more than eight axes as slaves of a single master axis.
This error is only generated while executing the CHAIN instruction.

Solution:
Please reduce the number of slave axes.

Errors and Notifications 39

Numeric control

4372 Incorrect use of an instruction (Function:FunctionName line:LineNumber)

Cause:
This error is generated in one of the following situations:

1. You are using an instruction to manage a mailbox (sendmail, waitmail, endmail, ifmail) or an instruction
for IPC management (sendipc, testipc, waitipc) within a function called by an Errsys, OnInput or OnFlag
instruction.

2. You are using an IfError or an IfMessage instruction without having enabled status alarm management.
3. You are using the Watchdog instruction without the presence of the TMSWD board.
4. The parameters defined in an interpolation instruction (linearinc, linearabs, circle, circinc, circabs,

helicinc and helicabs) are not consistent. For example, the number of declared axes is different from the
number of declared positions or a greater number of axes has been declared than that the instruction
can manage.

Solution:
Solutions for each listed cause:

1. Move to another function the instruction that causes the error or remove the instruction.
2. Check that the status alarm management has been enabled. In the tpa.ini file in the [ALBATROS]

section under the AlarmsHaveStatus the assigned value must be 1.
3. Remove the WatchDog instruction or provide a TMSWD board.
4. Check that the parameters of the GPL instruction are correct. Each axis must correspond to a position.

The number of the axes declared in the instruction should not be greater than the number of the axes
that the function can manage. For example, the LINEARABS instruction can manage up to 6 axes. If
more than 6 parameters are declared, the instruction generates the system error.

4373 Can't read feed rate (Function:FunctionName line:LineNumber)

Cause:
The GETFEED instruction was used on a TmsBus or TmsCan board that is not a master.

Solution:
in the hardware configuration please check that the board on which the feedrate is connected is master.

4374 Too many IPC instructions in execution (Function:FunctionName
line:LineNumber)

Cause:
The maximum limit of 16 IPC instruction in execution at the same time was exceeded.

Solution:
Please modify the GPL code.

4375 FASTREAD executed on axes from different boards (Function:FunctionName
line:LineNumber)

Cause:
A FASTREAD instruction was executed, although the axes passed as parameters were not all connected to
the same board.

Solution:
Please modify the GPL code or the Virtual-Physical configuration as required.

4378 Instruction not enabled (Function:FunctionName line:LineNumber)

Cause:
An attempt to use an instruction whose execution was not enabled. Probably, the hardware key is not
correctly inserted or is missing.

Solution:
Please insert the hardware key correctly. If the problem persists, contact the manufacturer.

Albatros40

Numeric control

4379 The instruction cannot be used in functions launched by Interrupt
(Function:FunctionName line:LineNumber)

Cause:
An attempt to use an illegal instruction in a function launched by interrupt. The functions launched by
interrupt are passed as parameters to ONERRSYS, ONINPUT and ONFLAG instructions.

Solution:
Modify GPL code. Please consult the list of instructions which can not be used with interrupt.

4380 Too many writing requests into buffer memory area (Function:FunctionName
line:LineNumber)

Cause:
Too many write operations were performed on the buffered memory at the same time (buffered memory is
characterised by relatively slow access).

Solution:
Please verify the instructions that perform write operations on the variables allocated in the buffered
memory: counters, timers, matrixes and variables declared as "non volatile".

4381 Cannot use a serial channel not yet open (Function:FunctionName
line:LineNumber)

Cause:
An attempt to execute an instruction that operates on the serial port, before executing the COMOPEN
instruction for this port.

Solution:
Please modify GPL code.

4382 Cannot open a serial channel already open (Function:FunctionName
line:LineNumber)

Cause:
A COMOPEN instruction was executed on a serial port that has already been opened with the same
instruction.

Solution:
Please modify GPL code.

4383 Attempt to open too many auxiliary processes (Function:FunctionName
line:LineNumber)

Cause:
An attempt to open more than 4 auxiliary processes at the same time.

Solution:
Please modify GPL code.

4384 Auxiliary process not in execution (Function:FunctionName line:LineNumber)

Causa:
An attempt to access an auxiliary process which is not in execution.

Solution:
Please modify GPL code.

4385 Attempt to open an auxiliary process from another task (Function:FunctionName
line:LineNumber)

Cause:
An attempt to open an auxiliary process from a different task from the one that started execution. Auxiliary
tasks can only be used by the tasks that started their execution.

Errors and Notifications 41

Numeric control

Solution:
Please modify GPL code.

4391 Error activating SYSOK (Function:FunctionName line:LineNumber)

Cause:
The SYSOK signal activation was not successfully concluded. This is often due to a malfunctioning Greenbus
transmitter on the axis board.

Solution:
Qualified technicians can perform a Hardware test on the i296 microcontroller dual port memory. If the
problem persists, please contact the constructor.

4394 Too many cycle errors (Function:FunctionName line:LineNumber)

Cause:
There are more than 2000 cycle errors active.

Solution:
Please correct GPL code by limiting the number of notifications.

4395 Too many messages (Function:FunctionName line:LineNumber)

Cause:
There are ore than 2000 messages active.

Solution:
Please correct GPL code by limiting the number of notifications.

4397 Stack overflow (Function:FunctionName line:LineNumber)

Cause:
A GPL function stack exceeded the maximum limit of 2Kbyte.

Solution:
Compile the GPL code again and check in the compiler report the estimated stack space of the function that
generated the system error. Then reduce the number of local variables and of parameters passed to the
functions (replacing them, for example with global variables). Please reduce the number of CALLs.

4398 Stack underflow (Function:FunctionName line:LineNumber)

Cause:
It can only occur in case of a serious Firmware error, such as the incorrect management of function
parameters or local variables.

Solution:
Please contact the Manufacturer.

4399 Parameter out of range (Function:FunctionName line:LineNumber)

Cause:
A GPL variable or a device was assigned a value outside the allowed range.

Solution:
Please correct and compile the GPL code again.

4865 The machine definition for the interpolation (G216 or G217) is missing

Cause
An attempt to move the axes with an ISO interpolation or the configuration indices have been set without
defining in advance the configuration matrices and the axes that form the machine.

Solution:
Please correct and compile the GPL code again, using the instructions ISOG216.

Albatros42

Numeric control

4866 The index definition of the selected machine configuration (M6) is missing

Cause:
An attempt to move the axes with an ISO interpolation without defining in advance the indices of the
machine's configuration matrices

Solution:
Please correct and compile the GPL code again, using the instruction ISOM6.

Errors generated by CNCTPA communication driver6.2.10

16385 Disconnected module

Cause:
The connection between the Supervisor PC and a module was interrupted.
The possible causes are the following:
· power failure of the remote module
· Ethernet cable disconnection, even if temporary, due to a false contact in the connectors or to damaged

cables
· power failure or malfunctioning of the Ethernet hub (if present)
· interruption of the remote module firmware due to damaged configuration files
· remote module CPU reset due to overheating or to EM disturbance

Solution:
Verify that the module is switched on. Verify Ethernet cables and connectors. Update the firmware in the
remote module. Check that this module has not overheated because of insufficient ventilation and that it is
not subject to EM disturbance. If the problem persists, please, contact the Manufacturer.

16386 Connected module

Cause:
A remote module was connected to the Supervisor PC after Albatros initialisation phase. Albatros tries to
connect all the modules indicated in the System Configuration during booting, which lasts approximately 4
seconds. Any module connected later generates a system error.

16387 Reconnected module

Cause:
A remote module was reconnected to the Supervisor PC after being disconnected. This error always follows
error 16385: "Disconnected module".

16388 Initialized module

Cause:
A remote module was reinitialized during normal functioning. This implies that the module was disconnected
and reconnected to the Supervisor PC beforehand. Therefore this error always follows error 16385:
"Disconnected module".
It indicates the module reset due, for example, to power failure.

16389 Module interrupted connection

Cause:
A remote module has closed the connection with Albatros. This may happen when the module does not
receive any command or query from the Supervisor PC for a long time. This error shows a problem (overload
or deadlock) on the Supervisor PC.

Solution:
Check the Supervisor PC for programs that may cause overloads or deadlocks. Disable the screen saver on
the Supervisor PC. If the problem persists, contact the machine constructor.

16641 The control firmware does not respond to commands

Cause:
An error arose during system initialization. Specifically, firmware does not respond as expected. This fault
might be caused by a damaged firmware file.

Solution:

Errors and Notifications 43

Numeric control

Try to reset system and if necessary install Albatros again. If the problem persists, please, contact the
Manufacturer.

16642 TpaSock does not respond to commands

Cause:
An error arose during system initialization. Specifically, communication software with remote modules does
not respond as expected. This fault might be caused by a damaged software file.

Solution:
Try to reset system and if necessary install Albatros again. If the problem persists, please contact the
Manufacturer.

16643 Operating System cannot use RTX

Cause:
The Operating System installed on the PC does not allow the use of RTX and consequently does not allow
correct operation of versions of Albatros requiring its presence.

Solution:
Update the PC Operating System. Please, check the minimum system requirements on the installation
manual of Albatros (InstallationGuide.pdf).

16645 Error sending firmware code

Cause:
An error arose during system initialization. Specifically, transmission of a firmware file to a module failed.

Solution:
Try to reset the system. If the problem persists, please contact the Manufacturer.

16646 Could not restart firmware code

Cause:
An error arose during system initialization. Specifically, firmware failed restarting after a previous stop.

Solution:
Try to reset system. If the problem persists, please contact the Manufacturer.

16897 RTX not installed

Cause:
The installed version of Albatros requires RTX installed on the PC; however, this has not been detected.

Solution:
Install RTX, or install it again if already loaded. Please, refer to the installation manual of RTX Albatros
(InstallationRTXGuide.pdf).

16898 User has no Administrator rights

Cause:
Albatros was started up by a user without Administrator rights on the PC. Administrator rights are required
for correct operation of Albatros.

Solution:
Please close current working session and access system as "Administrator" or as other user with
Administrator rights.

16899 Wrong dimension of module RAM

Cause:
RAM dimension detected on remote module is inconsistent with expected dimension. This fault is normally
caused by a hardware failure.

Albatros44

Numeric control

Solution:
If the problem persists, please contact the Manufacturer.

16900 Module IP address is wrong

Cause:
A remote module has been detected whose IP address does not belong to the supervisor PC subnet. Albatros
cannot communicate correctly with the module.

Solution:
Check the settings of the AlbDHCP service and of the LAN board on the supervisor PC. Please read Albatros
installation manual (InstallationGuide.pdf).

16901 Module is already connected to another plant

Cause:
A remote module appears to be connected to a different supervisor PC. This may be caused by presence on
the network of another PC with Albatros running and using the same module. It may also be caused by a
failure of the communication software on the module.

Solution:
Check that no other supervisor PC is using the remote module. Reset the module. If the problem persists,
please contact the Manufacturer.

16902 The module is not configured

Cause:
A module appears not to be configured in Albatros "System Configuration".

Solution:
Please configure the module.

16903 Firewall settings prevent communication

Cause:
A firewall blocking communication between Albatros and remote modules has been detected.

Note: Albatros can identify Windows Xp firewall only and not other firewalls as those included in some anti-
virus software packages.

Solution:
Please modify firewall settings or disable it.

16904 Network board not present or disabled

Cause:
No network board available for connection to remote modules has been found.

Note: the detection of a network board does not grant proper settings or connection.

Solution:
Check the network board and its configuration. If the problem persists, please contact the machine
manufacturer.

16905 Control firmware code missing

Cause:
Albatros can't find a firmware file on the PC hard disk. The problem may be caused by an accidental file
deletion or a incorrect update.

Solution:
Check that files in the FW sub-folder of Albatros setup are present and have the right version number. Please
contact the machine Manufacturer.

Errors and Notifications 45

Numeric control

16906 RTX version incompatible with control firmware code

Cause:
RTX version is not compatible with the installed firmware.

Solution:
Install the right RTX version or update the firmware. Please contact the machine Manufacturer.

16907 Operating system version is incompatible with control firmware code

Cause:
Operating system version of the remote moduleis not compatible with the firmware installed.

Solution:
Install in the remote module the correct operating system version or update the firmware. Please contact the
machine Manufacturer.

17153 BoardType: Firmware code of GreenBUS transmitter missing

Cause:
A firmware file could not be found in FW folder. Normally this depends on a file accidental erasure or on an
incomplete or damaged installation.

Solution:
Reinstall Albatros after executing a backup of the system. Please contact the machine manufacturer.

17154 BoardType: Part of firmware code of GreenBUS transmitter missing

Cause:
File containing firmware of GreenBus transmitter resides in FW folder but appears to be damaged or
incomplete.

Solution:
Reinstall Albatros after executing a backup of the whole system. Please contact the machine manufacturer.

17155 BoardType: Error sending bootstrap code of GreenBUS transmitter

Cause:
An error occurred during system initialization. Specifically, sending a firmware file to a module failed.

Solution:
Try to reset the control. If the problem persists, please contact the Manufacturer.

17156 BoardType: Error sending Main code of GreenBUS transmitter

Cause:
An error occurred during system initialization. Specifically, a firmware file failed being sent to a module.

Solution:
Try to reset system. If the problem persists, please contact the Manufacturer.

17157 BoardType: Bootstrap code missing

Cause:
A firmware file could not be found in FW folder. Normally this depends on a file accidental erasure or on an
incomplete or damaged installation.

Solution:
Install Albatros again after executing a backup of the system. Please contact the manufacturer.

Albatros46

Numeric control

17158 BoardType: Main code missing

Cause:
A firmware file could not be found in FW folder. Normally this depends on a file accidental erasure or on an
incomplete or damaged installation.

Solution:
Reinstall Albatros after executing a backup of the system. Please contact the machine manufacturer.

17159 BoardType: Error sending bootstrap code

Cause:
An error occurred during system initialization. Specifically, sending a firmware file to a module failed.

Solution:
Try to reset the control. If the problem persists, please contact the Manufacturer.

17160 BoardType: Error sending Main code

Cause:
An error occurred during system initialization. Specifically, sending a firmware file to a module failed.

Solution:
Try to reset the control. If the problem persists, please contact the Manufacturer.

17409 Could not send auxiliary executable

Cause:
This error may occur while updating firmware on a remote module. It may be caused by a momentary
network failure but also by a damaged firmware on the module. This error message may include an error
code.

Solution:
Try to switch off and switch back on the remote module and repeat the update procedure. If the problem
persists, please contact the Manufacturer.

17410 Could not run auxiliary executable

Cause:
An error occurred during system initialization. Specifically, an auxiliary program could not start execution.
The error message also reports the auxiliary program name and possibly an error code.

Solution:
Try to reset system. If the problem persists, please contact the Manufacturer.

17667 DLLName: Could not run firmware code

Cause:
An error occurred during system initialization. Specifically, firmware code could not start. "DLLName"
corresponds to the software component that caused the error.

Solution:
Try to reset system. If the problem persists, please contact the Manufacturer.

17668 DLLName: Could not get pointer to shared RAM

Cause:
An error occurred during system initialization. Specifically, the communication channel with firmware could
not be opened. "DLLName" corresponds to the software component that caused the error.

Solution:
Try to reset system. If the problem persists, please contact the Manufacturer.

Errors and Notifications 47

Numeric control

17921 Could not send NODETPA

Cause:
This error may occur while updating firmware on a remote module. It may be caused by a momentary
network failure but also by a damaged firmware on the module. This error message may include an error
code.

Solution:
Try switching off and on the remote module and repeating the update procedure. If the problem persists,
please contact the Manufacturer.

17922 NODETPA did not restart

Cause:
This error may occur while updating firmware on a remote module. It may be caused by a momentary failure
but also by a damaged firmware on the module. This error message may include an error code.

Solution:
Try to reset Clipper module and repeat the update procedure. If the problem persists, please contact the
Manufacturer.

17923 NODETPA not running

Cause:
A remote module has been detected on the network, whose communication software is not running. Normally
this is caused by a failure of communication software. The error message may include an error code.

Solution:
Try to switch off and on the remote the module. If the problem persists, please contact the Manufacturer.

18177 NODETPA tried to access an invalid address

Cause:
The remote module communication software raised an error. The error message may include an error code.

Solution:
Try to switch off and on the module. If the problem persists, please contact the Manufacturer.

6.3 Generic Notifications

Albatros starts running6.3.1

It reports Albatros started and displays some useful information about the program version and the execution
environment.

Albatros ends running6.3.2

It reports Albatros is about to end running.

Computer enters stand-by mode6.3.3

It reports that computer is about to entering stand-by mode. From now on Albatros is no longer able to
respond to requests and notifications from GPL loop.

Computer exits stand-by mode6.3.4

It reports that computer has just exited stand-by mode. Albatros resumes execution without being restarted.

Computer shutdown6.3.5

It reports that computer is about to be shut down, while Albatros is still running.

Albatros48

Numeric control

Current access level6.3.6

It reports that the access level to the Albatros functions has changed; it usually happens for maintenance

operations or changing the loop or the configuration.

Software update of modules6.3.7

It reports that it has been requested to update the software and firmware present in the remote controls.

Sending configuration to the modules6.3.8

It reports that it has been requested to update the configuration and loop present in the remote controls.

System Configuration 49

Numeric control

7 System Configuration

7.1 Introduction

In the chapter concerning the composition of the system, we have already seen how the Albatros system
consists of one or more modules forming a plant and how each one of these is organised in a hierarchical
structure.
To configure the machine from the point of view of Albatros it is necessary to follow a sequence of operations
which enable to configure the various logic levels and the underlying hardware.

The general order to be followed when configuring a system is:

· Module Configuration
· Definition of Groups and Subgroups
· Devices Configuration
· System Configuration
· Hardware Configuration
· Virtual physical Configuration

Basically Module, Group and Machine Configuration determine the logic structure of the machine, while the
System, Hardware and Physical Virtual Configuration determine the physical structure.
We will analyze each one of these points in detail in the following paragraphs.

7.2 Device Configuration

Introduction7.2.1

In the chapter concerning the composition of the Albatros system, we described the various types of devices
which can appear in a module. Now we will describe the devices from the point of view of their configuration.

Each type of device can be configured a maximum number of times, as specified in the following list:

Type of device Max. number
Analog input 128
Analog output 128
Digital input 4096
Digital output 4096
Input port 512
Output port 512
Axis 240
Timer 128
Counter 128
Flag Bit 1024
Flag Switch 256
Flag Port 256

Generic Device7.2.2

Most devices require the same configuration parameters. Below we have illustrated the configuration of a
Digital Input, however the same considerations apply to:

· Flag bit
· Flag switch
· Analog output
· Input Port
· Output Port
· Flag Port
· Timer
· Counters

To configure any device among those listed above, the following settings must be specified:
· Name: name of the device, a maximum of 40 characters.
· Comment: a brief description of the device, it can be translated into various languages, no spaces.
· Read accesses: specifying the minimum access level required for the device to be visualised in the

Diagnostic windows or in the Synoptic Views.

Albatros50

Numeric control

· Write accesses: specifying the minimum access level required to modify the status of the device.
· Public: specifying if the status of the device can be read or modified by a GPL code not belonging to the

group of the device.

Digital output7.2.3

The digital output has one parameter that standard devices do not have: the One shot multivibrator.

To configure a digital output, the following settings must be specified:

· Name: name of the device, a maximum of 40 characters.
· Comment: a brief description of the device, it can be translated into various languages, no spaces.
· One shot multivibrator: if selected, it configures the output as one shot multivibrator, which means

that when the output is set to ON it switches automatically back to OFF 200 ms later.
· Read Accesses: specifying the minimum access level required for the device to be visualised in the

Diagnostic windows or in the Synoptic Views
· Write accesses: specifying the minimum access level required to modify the status of the device.
· Public: specifying whether the status of the device can be read or modified by a GPL code not belonging

to the group of the device.

Analog input7.2.4

The analog input has one parameter that standard devices do not have: the type of power in input.

To configure an Analog input the following settings must be specified:
· Name: name of the device, a maximum of 40 characters.
· Comment: a brief description of the device, it can be translated into various languages, no spaces.
· Type: to select the power interval read in input.
· Read accesses: specifying the minimum access level required for the device to be visualised in the

Diagnostics windows or in the Synoptic Views.
· Write accesses: specifying the minimum access level required to modify the status of the device.
· Public: specifying if the status of the device can be read or modified by a GPL code not belonging to the

group of the device.

Axis7.2.5

Basic Data

The base data to be specified is:
· Name: name of the device, a maximum of 40 characters.
· Description: a brief description of the device, which can be translated into various languages, no

spaces.
· Resolution: resolution of the encoder, depending on the characteristics of the encoder and on the

specified unit of measure. Remember that Albatros axis boards count as pulses the rising edges and the
falling edges of both encoder phases (a 2500 pulses/revolution encoder will be detected as a10000
pulses /revolution encoder).

· Axis Typology: type of axis. The types are: Analog (analogically controlled), Stepping motor,
Digital, Count (only encoder reading), Virtual.

· Unit of Measure: the unit of measure used to indicate the position of the axes. As all the derived
dimensions depend on it, we advise to set this parameter before any other.

· Encoder Phases Rev: it allows correcting via software a possible cable inversion of the encoder phases.
· Reference Reverse: it allows to reverse the speed reference of the axis. If used with the encoder

phases reverse it allows to reverse the direction of the axis (if cabling is correct).
· Zero pulse enable: only available for counting axes, it automatically resets the position to zero when

the encoder pulse is detected.

Movement parameters

Parameters used for axis point to point movement:

· Max Speed: maximum speed of the axis.
· Acceleration: time of the acceleration ramp.
· Deceleration: time of the deceleration ramp.
· Minimum Speed: speed reached by the motor in a single step;it can only be set on stepping motor

axes.
· Slope Typology: ramp typology of acceleration and deceleration. Not available for stepping motors.

System Configuration 51

Numeric control

· Proportional: proportional coefficient of the position loop PID controller.
· Integrative: integration coefficient of the position loop PID controller.
· Derivative: derivation coefficient of the position loop PID controller.
· Feed Forward: percentage of feed forward. It allows to reduce the loop error at equal speed.
· Feed Forward Acceleration: percentage of feed forward acceleration. It allows to eliminate the

remaining loop error (not eliminated by the feed forward) during axis acceleration and deceleration
phases.

· Integrative Samples: sets the number of samples of loop error, used to calculate the integral
component. Valid values are in the range 1 to 200. The default value is 50. See GPL SETINTEGTIME
instruction.

Interpolation parameters

Parameters used for axis interpolation movement.

Except for minimum speed, they have the same meaning as the parameters described in the Moving
Parameters. However these are used for interpolation movements.

Note: acceleration and deceleration values, set in the interpolation parameters, cannot be lower than the
corresponding values in the movement parameters.

Other parameters

· Manual Speed: specifying the maximum configuration speed which can be used in manual movements.
It will never exceed the maximum set speed.

· Dynamic Servoerror: enables or disables the dynamic servoerror. The default value is disabled
dynamic servoerror, so the threshold servoerror remains enabled. See GPL SETMAXERTYPE instruction.

· Wait while the axis stops: enables or disables the overshoot recovery function. It sets a pause of 50
ms at the end of each movement.

· Axis moving Timeout: Valid values are in the range 0 to 1024. See GPL ENABLESTARTCONTROL
instruction.

· Incorrect encoder connection limit: The set values are expressed in the unit of measure that axis
resolution is expressed in. The settable values must be in the range 128/axis resolution to 16384/axis
resolution. The default setting is calculated based on a number of steps equivalent to 1024, i.e.
1024/axis resolution.

· Positive Servoerror Limit: maximum value of the loop error for loop correction in positive direction.
· Negative Servoerror Limit: maximum value of the loop error for loop correction in negative direction.
· Positive Axis Limit: maximum value of axis running in positive direction.
· Negative Axis Limit: maximum value of axis running in negative direction.
· Positive Quiescent threshold: tolerance on arrival position in positive direction.
· Negative Quiescent threshold: tolerance on arrival position in negative direction.

Reference parameters

· Reference: value of the reference power corresponding to maximum speed
· Automatic Adjust: enables or disables calculation of automatic offset recovery. It's usually enabled.
· Initial Offset: Value to which initial reference offset is set. Value must be in the range -10 to 10.

Default value is 0.
· Notch filter frequency: Frequency value to be filtered. Value must be in the range 0 to 500.
· Minimum voltage: Sets the minimum voltage parameters for the axis indicated. The negative value

must be in the range -10 to 0, the positive value in the range 0 to +10. See SETDEADBAND instruction.
· Threshold: sets the threshold values. They are always less than or equal to the respective minimum

voltage values, hence the negative threshold value must be between 0 and the negative minimum
voltage value. The maximum threshold value must be between 0 and the positive minimum voltage
value.

Access levels

· Read Accesses: specifying the minimum access level required for the axis to be visualised in the
Diagnostic windows or in the Synoptic Views.

· Write accesses: specifying the minimum access level required to modify the status of the axis.
· Public: specifying whether the status of the axis can be read or modified by a GPL code not belonging to

the group of the axis.

Albatros52

Numeric control

Axis chaining

Axis chaining parameters. These are the PID controller coefficients which correct the loop error difference
between the master axis and the slave axes.

· Proportional: proportional coefficient
· Integrative: integration coefficient
· Derivative: derivation coefficient

Linearity correctors

Setting the screw linearity correction of the axis. The correctors allow axis positioning errors to be
compensated where these are due to mechanical imprecision of the axis itself (auto-correctors) as well as
errors due to the effect deriving from the other axes of the machine (crossed correctors) typically related to
bending in the structure. The correctors are not automatically enabled but must be enabled in the editing
window for correction values ([Edit...] button) and activated with the GPL code using the command
ENABLECORRECTION.

· Correction interval: this allows the distance between one correction and the next to be set. The
measurement number is given by the length of the axis divided by the length of the correction interval.

· Corrector file name: this allows the name of the file in which the correction values are saved to be set.
This will be an ASCII file in which the values are separated by the character ";". This allows them to be
edited with a standard text editor. The file extension is not specified, the extension ".csv" (comma
separated values) is automatically assigned.

· Correction data: allows the specification of the list of the axes to be included in the calculation of the
correction of the current axis. The current axis is always included in the list, this means that the auto-
corrector is always present. Up to another 5 axes can be specified. To add an axis select it in the list on
the left and press the [>>Add] button. To remove an axis select it in the list on the right and press the
[Remove<<] button. To specify correction values select an axis from the list on the right and press the
[Edit…] button. A window is opened with a table in which to insert the correction values.

NOTE: There is a limit of 235 screw linearity corrections managed by the system for each axis. Consequently,
the length of the measuring interval must be at least the 235th part of the length of the axis. For example, if
an axis is 2500 mm long, the correction interval must be set at 10.63 mm or more.There is also a limit to the
maximum value of an individual correction: this must be lower than 1024 encoder steps, for example for an
axis with a resolution of 256 steps/mm the maximum correction is ±4 mm.

7.3 Logical Configuration

Plant Configuration7.3.1

To define a new machine or modify an already existing one, you need to access the Module Configuration
screen page. The Module Configuration is the configuration of the modules forming the plant.

The Configuration environment can only be opened from manufacturer level or higher.

Access to Configuration

Select the option Open Configuration from the File menu.

If no modules of the plant have been configured, the Module Configuration is opened automatically,
otherwise the Machine Configuration will be opened. In this case, to access Module Configuration:

Select the option Module Configuration from the Edit menu.

To add a module to the plant simply press [New]. The button [Modify] allows modifying the data of an
existing module, the button [Delete] allows removing a module, and the button [Close] allows quitting the
plant configuration.

The data that identify the machine, and that are to be specified, are:
· the number of module: a sequential integer number that, if not specified, is assigned by the system
· a brief description

It also contains some data concerning the underlying Hardware, as follows:
· Axis control frequency: shows the rate at which the data are periodically exchanged between the

numerical control and the devices connected to it through the field buses.

System Configuration 53

Numeric control

· Number of interpolation channels: shows the maximum number of interpolation channels (i.e. the
max. number of the axis groups performing an interpolated movement) that can be managed
simultaneously.

· CPU use percentage: shows the percentage of time, covering the period of axis control (i.e. the inverse
of the "frequency axis control"), which is devoted to the execution of the firmware.

The same window can be opened from the group Configuration module branch, from the machine Configuration
Module branch, and from the Hardware Configuration module branch.

Group Configuration7.3.2

When the machine is designed from scratch, it is necessary to define all the components and to write all the
control cycles. In many cases the design is carried out starting from a machine already manufactured, which is
later changed according to the features of the new machine.

Creating a group

To create a new group access the Group Configuration screen page. All the groups, sub-groups and devices
come from the first branch of the tree, which is the module. If you press the [ENTER] key or the [Edit]
button, a dialog box opens to edit the module data.

Select the item Groups from the Edit menu

From here, it is possible to create new groups, to edit or delete the existing ones and to copy a group.

List of the commands to create, edit, delete, copy and paste groups, subgroups and devices

Command Action

Create a new group, a subgroup, a device [Ctrl+Enter], Button [New], Edit->New, context menu

Modify a group, a subgroup, a device [Enter], Button [Edit], Edit->Edit…, context menu

Delete a group, a subgroup, a device [Del], Button [Delete], Edit->Delete, context menu

Enable or disable the use of a group in the machine Context menu, Button [Enable]

Copy a group, a subgroup, a device [Ctrl+C], Button [Copy], Edit->Copy, context menu

Paste a group, a subgroup, a device [Ctrl+V], Button [Paste], Edit->Paste, context menu

When you create a new group, the window appears and the following data must be set:
· The name of the group
· A comment (that can be translated into the languages managed by Albatros)

It is also possible to indicate the group as Intergroup. At least one group must be set as intergroup, so this
selection can be used by Albatros to identify the "main" group of the machine. This is the group, whose main
function (that with the same group name) is automatically launched at start. This mechanism is used to start
the machine and run the tasks, which verify that everything correctly works, before giving the control to the
user.
When a group with devices connected to physical devices is disabled, you will be asked if you want to cancel
the virtual-physical link. If you choose to keep the links, the pins of physical devices, which they are connected
to, will be displayed in a grey colour on the graphic representation of the virtual-physical device.

Adding a subgroup to a group
To create a subgroup of the group, you must be positioned in the group.

If we do not intend to create any subgroups, select the Device List, as in the figure below and press [OK]. The
name of the subgroup will be given automatically.

It is now possible to insert the single devices in the subgroup. The process is similar to that used to create
subgroups. In this case a window containing the list of available devices will appear.

Select the required device and press [OK] for confirmation.

Another window will appear, to enable us to enter a name, a comment and other data which varies according
to the selected device. A detailed description of the devices and their settings will follow in the chapter Device
Configuration.

Copying a device

Albatros54

Numeric control

The device copy function allows to make a copy of any device. First, select the device and then press [Copy].
To insert the device in the list, select the branch, where to paste the device and enable the command [Paste].
In the dialog window the device new name must be inserted.

Copying a subgroup
The function of copying a subgroup allows to copy a subgroup with all the devices it contains. To insert the
subgrooup, select the branch, where to paste it and enable the command [Paste]. In the dialog window the
subgroup new name must be inserted.

Copying a group

The function of copying a group allows to copy a group including all the subgroups and the devices it contains.
Moreover, any group synoptic associated with it is copied (synoptic, whose name coincides with that of the
group).
It allows to quickly create groups having a structure similar to that of an existing group, without having to
recreate all the devices one by one. To copy a group, select the group you wish to copy, select the [Copy]
button and enter the name of the new group in the dialog.

Copying of devices, subgroups and groups can also be done between different modules.

Choosing the groups belonging to the machine

After the creation of the group archive, the groups effectively present must be disabled or enabled.
The groups are all present in the machine, unless they are disabled through the button [Disable] or by
selecting the same command from the context menu. If a group has been disabled, the option Not present
appears next to the group name.

To display only the groups present in the machine, select the option Machine from the menu Edit.
To insert a new group, press the button [Insert]. A window containing a group list present in the Groups
archive and not yet inserted in the machine will appear.

At this point, select the preselected group and drag it with the mouse to the window of the Machine
Configuration or select the button [Insert].
Moreover, it is possible to remove an existing group through the button [Remove] or it is possible to start the
research of the group name or of a device inside the machine composition structure.

In a machine, only one intergroup must be present.

7.4 Physical Configuration

System Configuration7.4.1

The system configuration allows to connect the physical resources (control units) to the modules defined in the
logic configuration. This is possible into the System Configuration dialog box. The modules list of the plant is
shown and to each of these a Network Node.

· Local node "Local" systems in which the HW handling the control is mounted directly on the user's
system interface, that is the PC.

· Name of a network node: "Remote" systems in which the HW handling the control is connected to the
PC through a serial line or network.

· Not configured: no configuration. This is the default at the beginning. If this choice remains, as a result
it will be possible in the dialog box Network Node Connections to associate a remote module.

Up to 16 modules can be configured and one only can be configured as local node.
To assign a module, select the button [Edit] or double-click with the mouse on the network node to
modify. Opening the pull-down menu, the list of the available remote modules is displayed, and it is also
possible to use a local node or to set a module as not configured. To confirm the selection, select the

button .

N.B: The profile machining of Albatros is protected by a USB hardware key, configured by T.P.A.

Hardware Configuration7.4.2

In Hardware configuration the boards and the nodes making up the system are defined.
The board occupying the first position in the list is called Master board.

System Configuration 55

Numeric control

Types of configurable boards:

· TMSbus max. two

· TMSbus+ max. four

· TMSCombo+ max. four

· DualMech max. four

· DualMech Mono max. four

· TMSCan max. two

· TMSCan+ max. four

· AlbMech up to two

· EtherCAT one

Describing the hardware configuration window

The hardware configuration window opens if you select in the menu Edit->Hardware.
To insert a board, a remote I/O module, or a CAN or EtherCAT node, press [New]. In this way a window
appears where you can select the board or the remote I/O module, and the position where the CAN bus, or the
Greenbus should be inserted.
In general, no more than 4 boards per each module can be configured and, according to the type of board and
bus, a variable number of remote I/O modules.

Hardware Configuration

The column Settings assigns some information concerning the board or the node.
By command [Move] you can move a board or a node from a position to another in the tree. Through this
operation the connections available in the Virtual-Physical configuration related to the remote module are
maintained.

A node can also be disabled. Disabling has the effect of keeping the connections in the Virtual-Physical
configuration while the node and the devices connected to it are totally disregarded by the system. Therefore,
no error is generated if the module is not detected during initialisation and no error is generated when a GPL
instruction is executed on a device associated with the module. Consequently, this feature must be used with
special care. To disable a node, use the [Disable] command; to enable a node again, use the [Enable]
command.

Default Configurations

Several default configurations are available. Either from menu Edit->Modify control type or the context
menu on the Module branch it is possible to select the required configuration. In case the configuration is new,
the tree is populated with defined boards and nodes; otherwise checks are performed to verify that the
hardware already present is compatible with the selected module type. Everything that is not compatible is
deleted.

Albatros56

Numeric control

Configure a node of a TPA bus

The I/O remote module types that can be configured on GreenBus (v 3.0) are as follows:

· Albre8 8 digital inputs and 8 digital outputs
· Albre16 16 channels configurable via software as digital input or output
· Albre24 24 digital inputs and 24 digital outputs
· Albre48 48 digital inputs and 48 digital outputs
· Albrem 10 input and 10 output ports
· AlbSTEP 8 digital inputs and 6 digital outputs, one stepping motor
· AlbEV 20 or 24 electrovalves (D-sub 25 pin connector)
· Albrea 4 analog inputs and 4 analog outputs

The configurable types of remote module on GreenBUS (v 4.0) are as follows:

· TRS-AX 4 analog or stepper axes
· TRS-EV-24 24 electrovalves (D-sub 25 pin connector)
· TRS-16 16 channels configurable via software as digital input or output
· TRS-IO 16 channels configurable via software as digital input or output. This can be

expanded through TRS-IO-E and TRS-AN-E module type (max. 5) and TRS-AC-E
modules

· TRS-IO-E 16 channels which can be configured as digital input or output; they can only be
used as expansion of a TRS-IO module.

· TRS-AN-E 1 analog input and 1 analog output that can be used only as expansions of a TRS-
IO module

· TRS-REM generic remote to produce special modules. Up to 12 input ports and 12 output
ports can be connected.

· TRS-AC-E 1 counting axis and 2 digital inputs, configurable as zero position reference and fast
input. In the table below the maximum number of TRS-AC-E, configurable in a
TRS-IO, is displayed.
If there is a total of 3 expansions of TRS-IO-E and TRS-AN-E, one only TRS-AC-E
expansion can be configured. If only one expansion (TRS-IO-E or TRS-AN-E) is
configured, you can have up to 2 TRS-AC-E expansions.

The TRS-AX, TRS-IO, TRS-REM and TRS-16 remote modules can be connected only to TMSbus, TMSbus+ and
TMSCombo+ boards.

No more than 4 TRS-AX remote modules can be connected to each TMSbus and TMSbus+ board.
The types of TPA remote module that can be configured on EtherCAT are as follows:

· TRS-CAT 16 channels that can be configured via software as a digital input or output. This
can be expanded through modules as TRS-IO-E, TRS-AN-E and TRS-AC-E
modules.

· STAR-CAT transforms an EtherCAT linear network topology into a star topology by means of
an input channel and up to 3 different output channels.

The table below shows the maximum number of expansions, that can be configured in a TRS-CAT.

Number of TRS-IO-E and TRS-AN-E expansions Number of TRS-AC-E expansions

7 0

5 1

3 2

1 3

Regarding the TRS-AX remote modules, when we increase the number of inserted TRS-AX modules, the
number of TRS-16 and TRS-IO that can be used decreases.
To calculate the maximum number of TRS-16 and TRS-IO remotes, which can be inserted, you need to apply
the following formula: number of other remotes = 32-(number of TRS-AX * 4). For instance, if 3 TRS-AX are
connected to a TMSbus board, applying the formula we get: number of other remotes=32-(3*4), then
maximum 20 remote modules of TRS-16 and/or TRS-IO type can be inserted.
The position of the remote should be chosen according to the address set through a switch on the remote
module. Please, refer to the hardware documentation of the single remote.

If you select a TRS-AX remote, you may need to set the type of axes managed.

System Configuration 57

Numeric control

The following diagram describes which types of axes can be associated with the various hardware:

· AlbMech board digital axes
· DualMech board digital axes
· DualMech Mono board digital axes
· TRS-AX remote analog axes (if configured as Analog), counting axes (if configured as Analog),

stepper axes (if configured as Stepper)
· AlbStep remote stepper axes
· TRS-AC-E expansion counting axes

In the MECHATROLINK-II each axis can be managed in position control or in speed control (default). The type
of control for each axis can be modified in the Hardware configuration window in the Setting column. The
number of the configurable axes changes according to the axis control frequency value, that has been set:

Board Axis frequency control (Hz) Maximum number of
servodrives

AlbMech 1000 8

AlbMech <=500 16

DualMech Mono 1000 8

DualMech Mono 500 20

DualMech Mono 250 30

DualMech 1000 16

DualMech 500 40

DualMech 250 60

Configure a node of a CAN bus

Bus control board

Albatros can manage devices on the CAN bus field through Tpa boards equipped with connector for CAN bus.
The CAN bus is available on boards such as TMSbus, TMSbus+, TMSCan+ and TMSCan.

Configure the basic data and services
The CAN bus data is defined in the hardware configuration. Select the CAN bus, whose parameters must be
defined and click the button [Edit].
The basic data is:

· Sampling time (TIME): sampling time in msec. It cannot be higher than 60000 (60 seconds). Default
is 2. On S-CAN bus only 2 is accepted.

· Time for synchronous communication of the PDO (TIMEPDO): time expressed in msec. It shows
the time for the PDO synchronous communication. The value set cannot be higher than the TIME value
(It is not a mandatory value).

· Waiting time (TIMEAFTERRESET): time expressed in msec. It shows the waiting time during the
initial phase due to a software reset of the nodes in the network. It cannot be higher than 60000 (60
seconds)

· CAN cycle number without response (LIFETIMEFACTOR): this is the CAN cycle number without
response to the Node Guarding call, before the error of disconnected node occurs. This value cannot be
higher than 100 and lower than 1. (The default value is 3).

· Baud rate: speed number of the CAN communication in kilobit per second (the value can be 1000, 500,
250, 125, 100).

The services can be enabled or disabled either by selecting or deselecting the option referring to the service.
Some values with a meaning provided by the manufacturer of the machine can be applied to the Extra field.
On this value, no control is performed. The default value is 16.

Albatros58

Numeric control

CAN node

Insert a new node

A node can be inserted by selecting the CAN branch of the tree and by clicking on the button [New]. The node
type can be deducted from the bus type. If the bus is CAN, the node is an I/O Node, if the bus is S-CAN, the
bus type inserted is Servo. In the dialog box, to insert the node, select:

· Position: this is the node number (from 1 on).
· AutoOp: if selected, the device acknowledges the automatic passage to the Operational status due to a

reconnection.

Configure a node

For each node it is possible to define the PDO transmission and PDO reception. If the bus is CanOpen, up to 8
PDOs can be defined for the TMSBus and TMSBus+ boards, up to 4 for the boards TMSCan and TMSCan+.
Select the node in the tree and click on the button [New]. The data to import in the dialog box is:

· PDO Type: select Transmission or Reception, according to the definition of a TPDO or a RPDO.
· Dimension: dimension of the transmission or reception PDO.
· COB-ID: value that can only be defined on the boards TMSBus and TMSBus+. The value is displayed and

stored in decimal. To display the value in hexadecimal notation, you need to select the Hexadecimal
checkbox located next to the value itself.

· Asynchronous: if enabled, asynchronous PDOs are configured, that is, they are not updated at every
cycle. This option is managed only on the boards TMSCan and TMSCan+. The reception of the
asynchronous PDOs is made through the GPL code through the instruction RECEIVEPDO.

Characteristics of the EtherCat Management in Albatros

The communication mode is always DC-Synchronous. The first node of the network provides the clock, so it is
essential to make sure that that node provides a precise and stable clock, as it is provided for example by TRS-
CAT. It is not possible to use other modes, such as, for example, Free-Run.
Managed protocols are: CoE (CAN application protocol over EtherCAT) and EoE (Ethernet over EtherCAT).
Inside CoE, the device profiles DS401 and DS402 are managed by the default operating mode of the cyclic
synchronous speed mode axis control.

The maximum number of EtherCat nodes is 200.

Introduction

To each physical EtherCAT device an ESI file(EtherCAT Slave Information) is associated, describing the
characteristics and the functionalities of the device. This file is in XML format. For each device one only ESI file
must exist. Generally, the ESI files can be downloaded from the manufacturer's Internet site. Albatros searches
for these files in the folder defined in Tpa.ini in the section [tpa] under DirESIFiles. Default option is the sub-
folder ETHERCAT of SYSTEM. “\EtherCAT” di SYSTEM.

From the ESI Albatros files it obtains the information on the device, by analysing all the elements
“/Devices/Device/Type”. Each device is identified by a Vendor ID, a Product ID and by a Revision Number.

Always from the ESI files the information on the expansions (also called modules) of the devices are obtained.
Albatros finds the information on the types of expansions by searching in the ESI file of the device the
elements “Modules/Module”.

EtherCAT hardware configuration

The hardware is configured by describing the master boards and, for each board, the list of physical devices
connected to that board on the bus. The physical devices are also called "nodes" of the field bus. For EtherCAT
the master board is not a specific board of bus control, but a network connection of the module is used.

As for the local modules, the network connection must be one of those managed by RTX, while for the remote
modules a specific network connection of the module is used among those managed by Windows CE 6.0. For
each local or remote module, you can configure one master only.

The master board must be inserted in the hardware configuration by selecting the Module branch and by
clicking on the button [New].

System Configuration 59

Numeric control

The EtherCAT node

To insert a node, select the board branch of the tree and click on the button [New]. The node index must be
consecutive, so that at each command [New], a node is added after the others. For each node, the following
data must be defined:

· Device name: select the device name among those listed. Only the devices with the most recent
revision are displayed; if you want to display all the revisions, you must select the entry Display
revisions.

· Axis mode: select the operating mode to be used for the operating nodes, in compliance with what
specified in the standard DS402, object 606016 "Modes of Operation". The choice is between Cyclic

synchronous position and Cyclic synchronous velocity. The latter is the default value.
· Force as I/O node: if enabled, it forces the numeric control to consider the drive as an I/O node. This

attribute is only applied to nodes that support DS402 (servo-drives).

The axis mode is the only data that can be modified after inserting the node.

An EtherCAT node can be deleted, moved, disabled and copied. The commands are availbale in the context
menu of each branch, in the main Albatros menu and in some buttons present in the window of hardware
configuration.
The command Delete cancels both the selected node, all its expansions and virtual-physical links. All its
following nodes are moved to the previous address.
The command Move, moves the selected node to a new address. The nodes following the chosen address are
also moved by one position.
The command Copy stores the data of the selected node to use it by the command Paste later.
The command Paste inserts the node previously copied in the device tree. The node is inserted in the position
selected by the user. All the following nodes are moved.

EtherCAT expansion
To insert an expansion select the node to which you want to add the expansion and click on the [New] button.
The expansion indexes must be consecutive, so an expansion at the end of the others is added to each [New]
command. Expansion PDO objects are not editable.

Description of a PDO

You can define up to eight PDOs sent by the node (TxPDO) and up to eight PDOs received by the node
(RxPDO). Each RxPDO describes one only PDO that the node receives from the master, therefore digital and
analog outputs for I/O nodes or target velocity and controlword for axis nodes. Each TxPDO describes one only
PDO that the node sends to the master, therefore digital and analog inputs for I/O nodes or current position
and status word for axis nodes.

For the list and the description of the PDOs and of the objects that can be mapped on a PDO please, make
reference to the documentation of the specific EtherCAT device and to its ESI file.

There are three modes to describe the PDOs in a node:

· Do not show any PDO.
In this way the numeric control uses PDO configured by default in the device.

· Only show the PDO without providing any list of the objects.
To be used when a CN has several PDO alternatives and not programmable.

· Describe the PDO in a complete way, by setting the communication object and the list of the objects to
map.
This mode is the one that provides the best control over the information sent and received by the node.

Each object is described by its index in the object dictionary of CN, optionally followed by a sub-index.
If the sub-index is not available, it is considered as 0.

The dictionary object (object dictionary) is the core of every device. It enables the access to all the types of
the device data, to the communication parameters, to the configuration and data processing parameters.

Attention: not all the object of the object dictionary can be mapped in a PDO.

Albatros60

Numeric control

Modify a drive PDO

As for servo-drive nodes, there is a PDO for each axis, so that the nth TxPDO and the nth RxPDO of the node
make reference to the nth axis of the node. The first two objects of each RxPDO and TxPDO have a
preassigned significance and dimension. The following table shows how to configure the PDO of the axes of a
same node, controlled in axis mode through Cyclic synchronous velocity.

Drive

RxPDO TxPDO

1° object

16 bit

Controlword

2° object

32 bit

Target velocity

1° object

16 bit

Statusword

2° object

32 bit

Actual position

1° axis 604016 60FF16 604116 606416

2° axis 684016 68FF16 684116 686416

nth axis Add 80016 to each object of the previous axis.

The following table describes how to configure the PDOs concerning the axes of the same node, controlled in

axis mode through Cyclic synchronous position.

Drive

RxPDO TxPDO

1° object

16 bit

Controlword

2° object

32 bit

Target position

1° object

16 bit

Statusword

2° object

32 bit

Actual position

1° axis 604016 607A16 604116 606416

2° axis 684016 687A16 684116 686416

nth axis Add 80016 to each object of the previous axis.

To modify the objects of an axis, select the axis in the tree and click on the button [Modify]. In the dialog
box, the index of the transmission PDO, the index of the reception PDO and the list of the configured objects
are displayed.
In particular, the data of the dialog box are:
· Transmission PDO index: this is the value of the transmission PDO of the axis. It is not a modifiable

value.
· Objects: list of the objects of the transmission PDO. The first two objects are established according to the

axis mode chosen.
· Object list: object list of the transmission PDO that can be used. For each object, if available, besides the

index, also the sub-index and the description are defined.
· Reception PDO index: this is the value of the reception PDO of the axis. It is not a modifiable value.
· Objects: object list of the reception PDO. The first two objects are established according to the axis mode

chosen.
· Object list: object list of the reception PDO that can be used. For each object, if available, besides the

index, also the sub-index and the description are defined.

The buttons [Up] and [Down] are used to modify the order of the objects in the list of the window Objects.
The button [Add] allows to insert an object not available among those in the Object list.
To modify the value of an object, select the object and double-click with the mouse. The syntax to define a
new object is:

· object number: this is the object number in hexadecimal form.

System Configuration 61

Numeric control

· sub-index: this is the sub-index number. It must be separated from the object number through the
character ‘.’ (point). This is an optional value that, if not defined, 0 is used as default value. This is in
decimal form.

· L: object dimension in bits. It must be multiple of 8.
The values not available are obtained from the object dictionary data, or default values are assigned.

Example:
object also complete of sub-index and length: 1600.1L16
object without sub-index: 1601L24
simple object: 1603

Such values can be then read by the GPL through the GETAXIS instruction, to which reference should be made.
It is possible, moreover, to trace the objects added both by the calibration window and by the oscilloscope.

More generally, from the GPL it is possible to access the writing and reading of objects in a PDO through the
GETPDO and SETPDO instructions, to which reference should be made.

Additional PDOs

To define the reception and transmission additional PDOs, select the node in the tree and then click on the
button [Modify].

In the dialog box, to add a transmission PDO, click on the button [Additional TPDO], while to add a reception
PDO, click on the button [Additional RPDO].

The dialog box to configure an additional PDO is similar to the dialog box to insert objects.

In this box, you can select the PDO index and the objects to be associated. If the PDO has mandatory objects,
that are not modifiable, they are displayed and all the modification buttons are disabled. The new PDO is added
in the tree after the drives. To modify the data, select and click on the button [Modify]. To delete an
additional PDO, select the PDO in the tree and then, the button [Delete].

Automatic acquisition of EtherCAT nodes

If the EtherCAT bus is present in the hardware configuration, it is possible to acquire the connected nodes from
the network, using the command Automatic acquisition of the nodes which can be activated from the
context menu. In order for the command to be executed, the hardware configuration data and the data on the
numerical control must be aligned and the ESI files that describe the node on the network must be present in
the folder defined in Tpa.ini in the [tpa] section under the DirESIFiles item.

The acquisition of EtherCAT nodes from the network follows the listed rules:

· in hardware configuration no node is configured: the data related to the nodes are read from the network
and displayed in configuration

· EtherCAT nodes have already been inserted in hardware configuration:
· if the node read from the network has the same address, same Vendor ID, same Product ID and same

Revision Number as the configured node, then this node is maintained with all its PDOs
· if the node read from the network has the same address as the configured node, but different Vendor

ID or different Product ID, then the configuration node is deleted, together with its virtual-physical
and is replaced by the network node. If the network node is a drive, the PDOs are read for the ESI file,
otherwise are read form the network node.

· if the node read from the network has the same address, same Vendor ID, same Product ID and
different Revision Number from the configured node, then only the revision number is replaced and the
PDOs are maintained.

· if the node defined in configuration does not have a corresponding node on the EtherCAT network that
occupies the same address, then it is disabled in configuration and the virtual-physical is maintained.

Virtual-physical Configuration7.4.3

Virtual physical Configuration is the last configuration step and consists in connecting the logic devices to the
hardware components.

Albatros62

Numeric control

Opening the Virtual physical Configuration two windows are displayed: the Machine Configuration window
(virtual) on the left, and the Hardware Configuration window (physical) on the right. Both show a graphic
representation of all the elements composing the system in a tree structure.

Virtual-Physical Configuration

The existing virtual-physical links are highlighted in the "Machine Configuration", by the Name of the device (in
red), while in the "Hardware Configuration" window they are highlighted by the name of the type of signal,
which follows the number of the terminal, also in red.

For each axes of a MECHATROLINK-II board 6 inputs and 1 digital output can be configured in virtual-physical.
For a detailed description, please read chapter GPL Language->Instruction->MECHATROLINK-II-
>MECGETSTATUS.
If the EtherCAT bus is available in a module, it is still possible to configure boards for the MECHATROLINK-II
bus, but with some limitations: with real-time at 1 ms, no more than six MECHATROLINK-II axes can be
connected (for each bus); with real-time at 2 ms this limit increases to 16 axes.

The devices or the terminals still to be connected are marked in black. The devices marked in grey are those
that belong to a disabled group, the configuration of which was maintained in the virtual-physical.

The signals indicating the axes, in the "Hardware Configuration" window, are all preceded by a rectangle whose
colour corresponds to the colour of the sheathing of the wire inside the connection cable.
It is possible to highlight a connection by selecting a logic device (or a hardware component) and pressing the
space bar: the connection is shown as a red line between the device and the hardware component. It is also
possible to keep the connection visible at all times by pressing [Alt+Enter].
To show which logic device is connected to the hardware component, select the hardware component and
double click on it with the mouse.
To select the logical device and the physical device to connect various procedures are possible:
first procedure

· Display on the screen, through the "Hardware Configuration" window, the physical terminal to which the
device has to be connected.

· Select, or point, the logical device required in the "Machine Configuration" window.

second procedure
· Select, or point, the chosen virtual device in the "Machine Configuration" window.
· Select the command from Edit->Find a suitable physical device menu or the key combination

[Ctrl+space]. Albatros displays automatically in the "Hardware Configuration" window the first physical
unengaged device to which the logical device can be connected.

third possible procedure
· Select, or point, a virtual device in the "Machine Configuration" window.
· Select the command from the menu Edit->Find next unlinked device or the key combination

[Ctrl+NumPad+] or the command Edit->Find previous unlinked device or the key combination
[Ctrl+NumPad-].

To connect the two selected devices:

System Configuration 63

Numeric control

· Click on the logical device to connect with the left hand button of the mouse, and keeping it pressed,
drag it towards the selected terminal. A red line will appear to indicate connection in progress. When you
have reached the terminal line, release the button to terminate the operation; or

· select the command Link! from the menu Edit or the keyboard combination [Ctrl+L].

To remove a connection, select the device or the affected component and press the button [Remove] or the
button [Del] on the keyboard.

Cabling maps7.4.4

When the virtual devices and the corresponding physical devices have been connected, it is possible to print
maps or lists of the virtual-physical links.

To perform this operation it is necessary to have installed MS-Word (version 6 or later) on the system, as
Albatros uses its functions to format the maps.
The system must also have been configured correctly, which means that the system must have the model files
used for map compiling. These are a series of files with a ".doc" extension which normally lie in the System
folder or in another installing folder (often the "Map" file). The important is that the folder where these files lie
corresponds to the one specified in the TPA.INI file, key: "DirMaps". For example:

[TPA]
DirMaps=C:\Albatros\Maps

To print the cabling maps, select any hardware component in the right hand window of the Virtual-Physical
configuration or in the window of the Hardware configuration.

Press the Print icon in the Status Bar, or select the heading Print from the File menu; the usual print options
window will appear. When the printer is set to your satisfaction, confirm by pressing [OK] and another window
will show the list of hardware components present in configuration.
Select from this window all the components to be included in the cabling map. To select more than one
component, select the components with the mouse while keeping the "Ctrl" key pressed.
Click on [OK] and the cabling maps will be printed. If the Print on paper option is deselected, the maps will
be saved as MS-Word documents in the file of the current module (Mod.0, etc).

Because of the large number of pages which are often necessary for printing, we suggest printing a proof
sheet, with only one hardware component, to check that everything is working. If a list of logic devices is
printed instead of the map, probably no component (for example an axis board or remote) was selected in the
hardware window. When a component is selected, its name appears highlighted in blue.

7.5 List of navigation keys to navigate through a tree structure

Key Description

Up Arrow
Down Arrow

moves the selection to the immediately previous row or to the following one

Right arrow expands the selected branch to an extra level and, if already expanded, moves the
selection on the next branch

Left arrow collapses the selected branch and, if already collapsed, transfers the selection on the
previous branch

+ expands the selected branch to one level

- collapses the selected branch

* expands all the levels of the selected branch

Albatros64

Numeric control

8 Development tools

8.1 Editor GPL

GPL Editor functions8.1.1

GPL editor is the instrument that allows to create and modify the files in the Albatros GPL code. This function
can only be activated as from the manufacturer password level. Each functions file contains information which
can be displayed in the File->Information menu.
The functions are the ones typically used in a text editor, so we find commands such as Copy, Paste, Find,
Replace etc. All these commands can be selected from the menu Edit.

Undo if possible, erases the last operation performed. The situation is reverted to the
older status, before the last operation performed.

Redo The situation is reverted to the older status preceding the last Undo command.
Cut Text or selected data are removed and copied in a temporary memory to enable

their possible insertion with the command Paste
Copy Text or selected item is copied in a temporary memory to be inserted again with the

command. Paste.
Paste Temporary memory content is inserted using different criteria according to the

active function.
Delete Text or rows or the selected item are deleted. Deleted data can be recovered by

acting immediately upon the command Delete
Select All allows the whole text of the active file to be selected. To the selected rows Copy,

Cut, Paste commands can be applied.
Find… searches a text in the current document. You can set some criteria to use under

research such as search direction, case-sensitive feature, research of a whole word,
research through regular expressions.

Find next allows the repetition of a previous search, enabling the change of the research
criteria, set by with the command Find.

Replace allows to search a text of the current document and to replace it with another text.

Insert device inserts a device by selecting it from the list of the devices. This function is
particularly useful when you work with a large number of devices whose name can
be difficult to remember. Only the devices of the current module that can be
recalled and all the public devices of the other modules are displayed.

Insert function inserts an empty function including some comments to use as a guide in Edit.
It inserts a function or a part of a function starting from the position of the cursor.
The function is read by a prototype file, written from the machine constructor. More
prototype files can be written. A prototype file is a text file, whose name must start
with the GPL prefix and TXT extension. It must be stored in the directory, where the
libraries are normally stored (usually system\lib). If more prototype files are
defined, selecting a command, a dialog box is opened, in which the list of the
prototype names is displayed without prefix and without extension.
Prototype files can contain, for instance, const definitions commonly used, handling
functions of system errors, generic functions, codes implementing algorithms for
various usages, and so on. They also content some comments.
A prototype file can be created by saving the selected text in the file of GPL
functions. This command is available only as keyboard accelerator [Ctrl+Shift+C]. A
dialog box opens to insert the name that has be given to the code fragment.

Insert message… inserts in the GPL text the numeric code associated to the chosen message. Enables
some new messages to be entered in the language files.

Enable/Disable new
page

inserts or removes a page break . Page break can be used as a bookmark to
spring to remarkable positions inside the function file.

Enable page break aftermoves edit cursor to the row of the next page break with respect to its position
Enable page break
before

moves edit cursor to the row of the previous page break with respect to its position

Development tools 65

Numeric control

GPL Editor

Syntax corrections are carried out in the archiving phase, when the text is also compiled. However, the
programmer can easily make a preliminary inspection, as the text is displayed in different colours according to
what it represents. For example, instructions are in blue, comments in green and labels in red.
Tab value can be modified from menu Options->Tabulations…. Two types of tabulations can be defined:
· absolute tabulations: they set the initial position for the instructions of GPL code the initial position of the

first argument of the instructions and the initial position for the comment.
· relative tab (spaces): it sets how many spaces is a tab
Tabulations also help to make the lay out of the GPL code more immediately comprehensible.

Each instruction or keyword is linked to the online help for further support when editing a function. To recall
the help simply place the cursor on the instruction and press [F1].

Each line of text can contain only one instruction. To continue the instruction in the following row press the
character '_' (preceded by a space) as the last one of the row. This allows to insert comments in the middle of
an instruction:

Message _
1000 ;code of the message that will be displayed _
3 ;synoptic cell in which it will be displayed [Enter]

Use of regular expressions

We can use the regular expressions in the Find and in the Replace windows. A regular expression is a

sequence of numerical and alphanumerical charaters used to find and replace portions of text in a larger text.

Albatros uses the specifics ECMAscript. In this paragraph will be described the main uses of the regular

expressions in Albatros.

The simplest regular expression is the one consisting of a single character. Exceptions do exist, represented by

the following characters:

· . (dot): the dot finds any character. For instance “A..” finds any occurrence of capital A followed by any

two characters.

Albatros66

Numeric control

· [] (square brackets): the square brackets allow specifying a list of characters within them.

Occurrences of each character will be searched for in the text. If the first character is ̂(caret) all

characters will be searched for, with the exception of those listed in the brackets.

For instance:

[<>]: all occurences of character < and character > are searched for.

[.]AX: all occurences with the string “sw” within are searched for.

[a-d] all occurences of characters a, b, c, and d are searched for. The hyphen indicates a set of

characters.

[\[\]]: all occurences of character [and of character] are searched for.

[̂ +]: all characters are searched for, with the exception of character +.

· * (asterisk): all occurrences of a character (or sets of characters) before the asterisk are searched for.

The asterisk affects only the character before it: in order to have it affect a set of characters, we need

to use parentheses.

For instance:

;-*: all the occurrences of the characters ; and ;- and ;-------- are searched for.

· + (plus sign): it searches for one occurence or more of the character before it. It differs from the

asterisk, as the character before the + sign must always be present. The dot affects only the character

before it: in order to have it affect a set of characters, we need to use parentheses. We will take the

same example used for the asterisk:

;-+: all the occurrences of the characters ;- and ;--- are searched for. The character ; (semicolon)

alone will not be searched for.

· ? (question mark): it makes the character before it optional, which, therefore, can be present once at
most.
For instance:
Setfeedi?: all occurences of the word setfeed and of the word setfeedi are searched for.

· {} (curly brackets): they specify how many times a character (or a set of character) needs be
present in the text.
For instance:
ee{2}: all occurrences of two sequential ee are searched for.

· .̂ (caret and dot): it finds the first character of each line.

· ̂(caret): it finds the searched for term only if it is at the start of a line.
· | (pipe): it finds the terms present either before and after the character ‘|’.

For instance:
Send|Cost: all occurrences of the word Send and the word Const are searched for.

· \ (backslash): the backslash has two functions:
1) it changes the normal character into a function.

\b it finds the initial or final boundary of the word
\B it finds the word, except its initial boundary
\d it only finds the digits
\D it finds all but the digits
\s it finds the space
\S it finds all but the space.
Examples:
\bi: it finds all the words in the text starting with letter i.

2) it changes a special character into a normal character. For instance, in order to search for the
special character ̂(caret), it will suffice entering the backslash before it.

Development tools 67

Numeric control

Insert a Message8.1.2

Albatros uses two kinds of messages: module messages and group messages.
The command can be selected from the menu Edit->Insert Message.
Group messages are inserted directly in editor when writing the GPL code, by using the DEFMSG instruction.
These messages can be displayed and used only inside the group in which they are defined, so that the same
message definition can be used in various groups, without creating superimposition.
Module messages, unlike group messages, can be used by any group. They can be inserted through the dialog
window that allows both recalling any existing message from the language file and introducing new messages.

Message management window

This way, there is no need to modify the file. The message will be inserted in the current language and, later, it
will have to be translated into the other languages (using the program TpaLangs).
All the messages in the language file are listed under the heading Description. To insert a message inside the
function, choose the required text and select the [Edit text] button.
To modify an existing message [Edit] or create a new one [New], first type in the modification or the new
text and then press the corresponding button.

Cryptography8.1.3

In Albatros it is possible to use encryption so that the source text of functions cannot be displayed.

Cryptography is enabled by selecting Tele+=0 or 1 in tpa.ini. The default value is 0. If the value is saved at 1,
the cryptography is enabled.

When a functions file is saved and cryptography is enabled, the following message will be displayed: "Do you
want to encrypt the file?". If you choose no, the file will be saved as plaintext. A previously saved, plaintext file
can subsequently be encrypted, while an encrypted file will not change, and will be saved in the same way by
default.

When a functions file is saved for the first time, with cryptography enabled, and a daily Manufacturer password
is used, the file will not be encrypted, but only saved as plaintext.
Subsequently, the encrypted functions file may only be displayed or edited in Albatros by the user who
previously saved it. The owner of an encrypted functions file cannot change!

The external file SBIANCA.EXE must be used to decipher the file. This is located in the Bin folder of Albatros.

From this program you can choose the files to decrypt. The Status and Credentials are displayed for each file.
The status may be "Plaintext" or "Encrypted".
"Credentials" gives information about file visibility. "Freely readable" means the file can be displayed from the
current password level. Blocked means the file cannot be displayed.
Select the files, then click on "Decrypt!" to decipher them.

Avalaible keyboard shortcut list8.1.4

Clearing a text
Key Description
Backspace erases a character on the left or the selected text
Ctrl+Backspace erases the word on the left
Del erases a character on the right or the selected text
Ctrl+T erases the words or the spaces on the right
Ctrl+Del erases the word on the right and all the following spaces until

the beginning of a new word

Albatros68

Numeric control

Comment of more text rows
Key Description
Ctrl+';'. In the Italian keyboards [Shift]
key must be pressed as well

this adds or removes the comment characters to the selected
rows.

Cursor positioning
Key Description
Up arrow
Down arrow
Right arrow
Left arrow

moves the cursor to the selected direction

Home moves the cursor to the beginning of the row to the beginning of
the row and to the first character of the row alternately

End: moves the cursor to the end of the row
Ctrl+Home moves the cursor to the beginning of the document
Ctrl+End moves the cursor to the end of the document
Ctrl+Left Arrow moves the cursor by one word on the left
Ctrl+Right Arrow moves the cursor by one word on the right
Ctrl+Enter moves the cursor on the first character of the following row

Select
Key Description
Shift+Home selects from the cursor position until the beginning of the row
Ctrl+Shift+Home selects from the cursor position until the beginning

of the document
Ctrl+Shift+End selects from the cursor position until the end of the document
Ctrl+Shift+Left Arrow selects the word or the the spaces on the left of the cursor
Ctrl+Shift+Right Arrow selects the word or the the spaces on the right of the cursor
Shift+Page Up selects a page up from the current position of the cursor
Shift+Page Down selects a page down from the current position of the cursor
Ctrl+W selects the word where the cursor is placed
Ctrl+A selects the whole document

Rectangular selection
Key Description
Alt+
Shift+Up Arrow
Shift+Down Arrow
Shift+Left Arrow
Shift+Right Arrow

selects a rectangular code group

Tabulations
Key Description
Tab in case of unavailable selected text, it inserts spaces between

characters, as defined in Options->Tabulations. If many rows
have been selected, Tab inserts on the right the spacing set for
the relative tabulation.

Shift+Tab In case of unavailable selected text, Shift+Tab moves the cursor
on the left side or the spacing defined Options->Tabulations.
If one or more rows have been selected, they are moved to the
left side of the spacing set for the relative tabulation.

Copy and Paste
Key Description
Ctrl+C
Ctrl+Ins

copy the selected text into the Clipboard

Ctrl+X
Shift+Del

deletes the selected text and copy it into the Clipboard

Ctrl+V
Shift+Ins

inserts the content of Clipboard from the cursor position

Ctrl+Y eliminates the row where the cursor is placed and copies its
content
into the Clipboard

Drag'n'drop (with the mouse) the selected text is draged and moved to the new position
after its release

Ctrl+Drag'n'drop (with the mouse) the selected text is draged and copied to the new position

Development tools 69

Numeric control

after its release

Cancel/Undo
Key Description
Ctrl+Z
Alt+BackSpace

cancels the last typing

Ctrl+Shift+Z undoes the last typing

Search and Replace
Key Description
Ctrl+F3 searches down into the whole document for the word which the

cursor is placed on.
Ctrl+Shift+F3 searches up into the whole document for the word, which the

cursor is placed on.
F3 searches for the following occurrence. The dialog box Find

should be closed.
Shift+F3 searches for the previous occurrence. The dialog box Find

should be closed.
Alt+F3 opens the dialog box Find and as a text to be searched sets the

word, which the cursor is placed on.

Displaying compilation errors
Key Description
Double-click on the error places the cursor on the row of the GPL function where the error

described occurred
F4 places the cursor on the row of the GPL function where occurred

the error, that follows the last selected error.
Shift+F4 places the cursor on the row of the GPL function where occurred

the error, that precedes the last selected error.

 Creating a prototype file
 Key Description
 Ctrl+Shift+C saves the text selected in the file of GPL functions. A dialog box

opens to insert the name that has to be given to the code.

 Folding control
Key Description
Ctrl+M expands or collapses the selected folding.

8.2 Libraries

A library is a collection of GPL functions which can be called within the custom GPL code without being limited
to a particular configuration. Libraries are very useful, as they can be easily copied from one machine to
another, which avoids having to rewrite common code when implementing new machines. For example, we
could create a mathematical and geometrical functions library.

Library files are archived in the system\lib folder. They are compiled by executing one of the following
commands: CNC->Initializing, File->Compile All, Save library file or global variables file.

If in the GPL code a machine is given a function or variable name which already exists in a library, in the
compiling phase the machine will always have the priority. If the same name is used in two different libraries,
when writing the GPL code, we suggest using the following full syntax to identify the required one:
namelibrary.namefunction. For example, if the LengthSegment function appears both in the LIBGEO library
and the LIBMAT library, and we want to identify the function belonging to the LIBGEO library, we write:
LIBGEO.LengthSegment.

All the operations concerning the library are managed through a dialog window. It is possible to create new
libraries [New]. The name given to the library will be added to the list of libraries installed. Moreover it is also
possible to import already existing libraries and to transform files of groups into a new library; this is done by
recalling them through the dialog window opened by pressing [Import…]. The libraries removed by [Erase]
are moved to the Recycle Bin of Window.

To modify the code of a library, select the [Edit] button. The library is opened by GPL editor. When writing the
library functions remember these basic rules:
· it is not possible to access devices, functions, and variables belonging to the configuration in which the

function is being written.
· it is possible to call public functions and variables from other libraries.

Albatros70

Numeric control

· the functions declared inside a library are defined as private by default. To make it possible for other
function files to recall them, they have to be declared as PUBLIC.

Library modification is subject to access level limitations of the person using Albatros. It is possible to assign or
modify library access authorisations by selecting the [Properties] button.

Any global variables declared in a library are displayed in a section of Diagnostics. The display of library
elements depends on the access rights of the person using Albatros.

8.3 Debug

The debugger8.3.1

The debugger is a function of Albatros which allows to follow the sequence of instructions of a GPL task step by
step, thus allowing you to identify and correct any logic errors and anomalous behaviour of the code.

This function can only be activated from the manufacturer level or a higher password level.
The debugger allows the user, for example:

· to assign breakpoints
· to interrupt the execution of a task and display the value of a variable
· to supervise the execution sequence of a function
· to check the value adopted by a local variable
· to check that, in the case of an instruction, the right branch was chosen

The commands required in debug mode can be selected from the Debug menu. The main ones are:

Go resumes the execution of a blocked task. The task will continue until the end, it will
not be stopped again or an interruption point will not be.

Restart restarts the debug of the current task

Break now stops the execution of the task which is being debugged. The cursor is placed at the
row, where the instruction has been broken.
Once the task has been stopped, its execution can be piloted and the status of the
local variables can be checked.

Step into steps into a single GPL instruction The task should have been previously broken.

Step out carries out all the instructions until the first instruction after the current one

Step over carries a single GPL instruction out or, if the instruction is a function call, it carries
the whole instruction out

Step to Cursor carries out the instructions until the cursor position

Stop Debugging debug usage. The function file that was being debugged is opened in Edit mode.

To access the debug, display the list of tasks in execution (from the menu Debug->Task in execution or the
list of all tasks (from the menu Debug->All tasks) and then select the task to be debugged.

Before executing the debug make sure there are no function compiling errors (for example: syntax errors and
undeclared variables) and that the module to be debugged has been started correctly.

The debug window is similar to the GPL editor window, however it does not allow to modify the code. The
background of the window is grey and the line in execution is highlighted in yellow.

Note: It is not possible to debug simultaneously more than one task belonging to the same module.

Task in execution8.3.2

The command can be selected from the menu Debug->Task in execution. It displays the list of tasks in
execution associated to a machine or module. It is possible to execute the debug or interrupt execution of a
task by selecting the task and clicking on the [Debug] or [End] button, accordingly.

All tasks8.3.3

It displays in a dialog window the list of all the tasks defined in the GPL code. These are represented
graphically as a tree structure. When we select a function, the file in which it is defined is opened and the
cursor is positioned on the first instruction of the function. This allows to set Breakpoints even before starting
execution.
You can debug any task and function without parameters.

Development tools 71

Numeric control

Below we describe the meaning of the symbols used in the composition of the task execution tree. A particular
symbol is the one indicating the recursive function, that indicates a function which includes a recall to the
function from which it is called.

Symbol Description

task of the Intergroup's main function

autorun task

generic task

real-time task

group function

group function executed by instructions such as ONINPUT, ONFLAG

library function

library function executed by instructions such as ONINPUT, ONFLAG

recursive function

Show call stack8.3.4

During debug it is possible to display the list of functions that were called but have not yet returned (that is, all
the functions in which the FRET instruction has not yet been executed). A dialog window appears, listing all the
function calls leading to the current instruction. The function executed last is at the top of the list.

To observe the behaviour of a function call:
· move the cursor to the desired position in the function
· select Debug->Step to cursor to take program execution to the desired position
· select Debug->Show Call stack, or the shortcut button [CTRL+K].
· the name of a function can be selected from the Call stack dialog window. The cursor will then go to the

first instruction of the chosen function.

Breakpoints8.3.5

A breakpoint allows to examine all the details of an instruction execution sequence, to examine or modify
variables and devices, to examine the list of function calls etc.
Task execution is interrupted when the instruction containing the breakpoint is reached.
Breakpoints can be set both before executing a certain task and during execution (from the menu Debug-
>Breakpoints). It is also possible to delete the breakpoints when they are no longer necessary.

List of breakpoints

In certain situations, despite having inserted breakpoints the task is not interrupted, because execution never
reaches the breakpoint. In this case the task can be interrupted by using the command: Debug->Break now.
The cursor will be positioned on the GPL instruction which was about to be executed when the task was
interrupted.

Albatros72

Numeric control

Variable content8.3.6

This command can be selected from the menu Debug->Variable Value.
After interrupting task execution the following can be displayed:
· the value of the local variables declared in the function where the task has been interrupted
· global variables
· the value assumed by an expression
· the status of devices and device parameters

Display/Change content of a variable

If the variable (or device) in not read-only, its content can be modified: obviously any modifications will affect
the execution of the next task.
Changing the value of a variable or device allows to test execution in different conditions from usual, to correct
errors and carry on with the execution of the next instructions.

It is possible to display the content of a variable, of a device or of a constant also by moving the mouse on the
variable, on the name of the device or on the constant. A tool-tip is displayed, where the type, the name and
the value of the data is shown. If you select an expression, its result is displayed. If the mouse pointer is inside
the selection, the whole selection is used, otherwise only the word where the mouse pointer is placed. If the
mouse pointer is not inside a word, the whole argument is used.
E.g., to see the value of the Mx[3][column], if the mouse pointer is on "3", 3 is displayed in the tool-tip; if the
mouse pointer is on "column", the value of the column is displayed; if it is on "matrix" nothing is displayed; if it
is on a square bracket, the value of Mx Mx[3][column] is displayed.

Available keyboard shortcut list8.3.7

To activate the commands of Debug, the options can be selected the menu Debug or typed directly on the
keyboard.

The keyboard shortcuts are as follows:

Key Description

Ctrl+F5 opens the dialog window showing the list of the tasks in execution

Ctrl+Shift+F5 opens the dialog window showing the list of all the tasks

Ctrl+B opens the dialog window to insert or cancel the breakpoints

Ctrl+F9 inserts or eliminates the breakpoints on the row where the cursor is placed

Ctrl+K opens the dialog box to display the list of the functions called, but not yet returned

Shift+F9 opens a dialog window to display the content of a variable

F8 executes the instruction If this is a function, it enters the function

Shift+F7 executes all the instructions of the function

F10 executes the instruction If this is a function, it executes it without entering

F7 executes all the instructions until the instruction where the cursor is placed. The cursor
should be placed on an instruction within a function

Alt+Interr interrupts the execution of the code at the last executed instruction

F5 resume the code execution after an interruption

Shift+F5 ends the current task and executes it again

Alt+F5 ends the debug

Development tools 73

Numeric control

8.4 Control initialization

Network Connections8.4.1

The profile machining of Albatros is protected by a USB hardware key, configured by TPA.
This command can be selected from the menu Cnc->Network Connections. It displays the status of the
remote modules connected to the system. If a module is not connected, the symbol with which it is indicated is
marked with a red cross.
Each module has two fields. The first one is the name of the associated module and the second one is the
name of the network station. Usually the name of the network station begins with the fixed characters followed
by the serial number of the remote module.

Assigning a network node to a logical module
To assign a network node to a module, position the mouse pointer on the text "Not configured" or click on the
button [Edit]. A few seconds later a window containing the list of available remote modules in the network will
appear (each remote module must be switched on and it must have received an IP address correctly).

Now, select the network node you want to connect to the logical module and confirm your choice by pressing

the button.

Notice that this operation can be carried out at a "Service" password level, without having to access Albatros
System configuration for which a "Manufacturer" password level is required.
However, the module must be configured as "remote ALBRTX" in System configuration, beforehand.

Software update of a remote module
You can fully update the control software, available in the internal storage of the remote module, by selecting
[Update].
Before applying this update, make sure that the selected remote module is connected to Albatros.

Hardware Diagnostics8.4.2

This command can be selected from the menu Cnc->Hardware Diagnostics. Hardware Diagnostics displays
the list and the status of configured modules, of boards and of the nodes belonging to them, as defined in the
hardware configuration. If the symbol of a board or of a node is marked with a red X, it can either mean that
this item was not found among the hardware in the control panel or that it was not possible to initialize it
correctly. If an item is marked with a yellow question mark, it means the system has detected a board or
node, but it does not match the type defined in configuration.

EtherCAT network topology

In the hardware diagnostics window, when in the tree a node of an EtherCAT network is selected, the button
[Details] will be activated, which in turn activates the graphical view of the topology of the EtherCAT network.

In this graph, the info on the nodes that are physically present on the network is shown: the status of each
node, the status of the axes, whether the node is a servodrive, and the quality of the communication. Each
node and each axis is represented as a rectangle, whose colour defines its status.

Moving the cursor of the mouse on the rectangle, a tooltip will show describing in text format the status and
the communication errors of the node or the status of the axis.

Viewing and editing objects in the nodes

In the hardware diagnostics window, when in the tree a node of an EtherCAT network is selected, the button
[Object dictionary] is activated, to view and edit the objects of the node. Editing data is only possible at
Manufacturer level.

The objects are grouped according to their address:

Starting address Final address Area name

0x0000 0x0FFF Data type area

Albatros74

Numeric control

0x1000 0x1FFF Communication area

0x2000 0x5FFF Manufacture specific area

0x6000 0x6FFF Input area

0x7000 0x7FFF Output area

0x8000 0x8FFF Configuration area

0x9000 0x9FFF Information area

0xA000 0xAFFF Diagnosis area

0xB000 0xBFFF Service transfer area

0xC000 0xEFFF Reserved area

0xF000 0xFFFF Device area

The integer values can be viewed both as decimals and as hexadecimals. When their value is changed, the
number can also be inserted as hexadecimal, using the notation $…H, and in binary, with $…B (as it is done in
GPL).

8.5 Test

Print global on disk8.5.1

This command can be selected from the menu Test->Print global on disk.
It saves the content of a global variable on disk as a formatted text file. The file's name is variablename.txt
and the file is saved in the Report folder. This operation can only be performed if the read access level of the
global variable is compatible with the current access level.

Saving a global variable

Development tools 75

Numeric control

Start function8.5.2

This command can be selected from the menu Test->Start single function.
It executes a function independently of the rest of the system, creating a new task. The task begins its
execution from the selected function, from which it will take its name.
Only the functions without input parameters and whose read access level is compatible with the current access
level can be executed. If the executed function is the main function of the inter-group, all the autorun tasks will
also be executed after.

Message Import8.5.3

Group messages assigned through the GPL DEFMSG instruction are saved in an .xmlng file. The messages
inside the file can be edited, added, or canceled. In order to visualize the changes in the GPL code, you need to
use the command Test->Import group messages, that is enabled only when there are no open windows.

To import group messages, all the GPL code must be compiled without mistakes. Otherwise, the user would be
prompted with a message saying "GPL code has not been entirely compiled".
Group messages belonging to encrypted files cannot be imported (See chapter Development tools->Editor
GPL->Cryptography), therefore, the user is not allowed to visualise them in plain text.

Only the messages that were already defined in the GPL code can be imported. The GPL text cannot be
modified if there is at least one DEFMSG instruction following an IFDEF instruction.
While importing group messages, errors can be detected when:
· among the texts of a particular group message, the language identifier code is present more than once
· a text is empty (that is: "")
· the name of a group or a library is defined more than once.
At the end of the import process all modules containing modified groups or libraries are compiled.

All the languages listed below can be used in XMLNG files
“AFK" Afrikaans
"ARA" Arabic
"AZE" Azerbaijani
"BAS" Bashkir
"BEL" Belarusian
"BGR" Bulgarian
"BSB" Bosnian (Latin alphabet)
"BSC" Bosnian (Cyrillic alphabet)
"BRE" Breton
"CAT" Catalan
"CHS" Simplified Chinese
"CHT" Traditional Chinese
"COS" Corsican
"CSY" Czech
"CYM" Gaelic
"DAN" Danish
"DEA" German (Austria)
"DEU" German (Germany)
"ELL" Greek
"ENG" English
"ENU" English (United States)
"ESP" Spanish
"ETI" Estonian
"EUQ" Basque
"FAR" Persian
"FIN" Finnish
"FRA" French
"FPO" Filipino
"FRB" French (Belgium)
"FYN" Frisian
"GLC" Galician
"HAU" Hausa
"HEB" Hebrew
"HRB" Croatian (Bosnia-Herzegovina)
"HRV" Croatian (Croatia)
"HUN" Hungarian
"IBO" Igbo
"IND" Indonesian
"IRE" Irish

Albatros76

Numeric control

"ISL" Icelandic
"ITA" Italian
"JPN" Japanese
"KAL" Greenlandic
"KOR" Korean
"SAH" Sakha
"KYR" Kyrgyz
"LVI" Latvian
"LTH" Lithuanian,
"LBX" Luxembourghish
"MNN" Mongolian
"NON" Norwegian Nynorsk
"NOR" Norwegian Bokmål
"NLB" Dutch (Belgium)
"NLD" Dutch (Netherlands)
"OCI" Occitano
"PLK" Polish
"PTB" Portuguese (Brazil)
"PTG" Portuguese (Portugal)
"RMC" Romansh
"ROM" Romanian
"RUS" Russian
"SKY" Slovak
"SLV" Slovene
"SQI" Albanian
"SRM" Serbian (Latin alphabet, Serbia)
"SRN" Serbian (Cyrillic alphabet, Bosnia-Herzegovina)
"SRO" Serbian (Cyrillic alphabet, Serbia)
"SRP" Serbian (Latin alphabet, Montenegro)
"SRQ" Serbian (Cyrillic alphabet, Montenegro)
"SRS" Serbian (Latin alphabet, Bosnia-Herzegovina)
"SVE" Swedish
"TAJ" Tajik
"TRK" Turkish
"TTT" Tatar
"TUK" Turkmen
"UKR" Ukrainian
"URD" Urdu
"UZB" Uzbek
"VIT" Vietnamese
"WOL" Wolof
"XHO" Xhosa
"YOR" Yoruba
"ZUL" Zulu

User notice in the alarm report file8.5.4

With the command Insert note, from the menu Test, it is possible to insert a notice in the alarm report file of
the current month (MONTHxx.TER). The menu option is enabled from Service password.

8.6 Tools

Customize…8.6.1

This command can be selected from the menu Tools->Customize….
It allows to set a maximum of 20 programs whose execution can be started by Albatros Tools menu.

Development tools 77

Numeric control

Configuration of the Tool menu

Menu Structure: lists the programs displayed in the Tools menu.
Command: name of the program to be executed. The folder in which the program is stored may

also be indicated, especially if it is not the same folder from which Albatros is executed
or from the folders whose operating system looks for the executable files (variable of
PATH windows environment).

Text in Menu: The name that should appear in the Tools menu to identify the executable program.
Arguments: any combination of command line arguments needed by the program for correct

execution. It is possible to insert dynamic subjects. For example, by using the string
$TER during ViewRER execution report file of current month open.
Here is the argument list:

$File Complete Path name of current file.

$FileName File name and extension of current file.

$FileDir Disc and folder of current file.

$Ter Complete Path name of report file of errors of current month.

$DirModule Disc and folder containing MODx of current file.

$Module Module number of current file.

$Bin Disc and folder containing Albatros executables.

$TpaIni CompletePath name of initialization file tpa.ini

$ReqDirModule Path (disk and folders) of Albatros module. If several modules are configured, the
module dialog box opens.

Albatros78

Numeric control

$ReqModule Albatros module number If several modules are configured, the dialog box of the
module number opens.

$ReqFile Name of the file. A window requiring the name of the file opens. The selected file will
be passed between the arguments of the program that will be executed.

Ask for Arguments: if selected, whenever program execution is requested, a dialog window appears to
allow to introduce different arguments from the ones set in the Arguments field. These
can vary according to the launch mode of the program.

Specifying the program-start arguments

Enable level: it sets the display level of the program in the Tools menu. Albatros test programs and
data modification programs are normally given a manufacturer level. Machining editing
programs are assigned a user level.

Certain fields can be edited using the [Add] button. This opens the Add Tool dialog window for the selection
of the program to be executed. The allowed executable files are the following: .EXE, .COM, .PIF, .BAT.
When the dialog window is closed, after confirming the data, the program is inserted in the Menu Structure
window and the name of the program and its folder, in the Command row.
The other buttons provided are [Delete], [Move Up], [Move down], which are used respectively to delete a
program and order the list of programs.

8.7 Browser

The browser8.7.1

Albatros browser function uses the information generated by the compiler to create a database for the rapid
search of symbols defined in the functions.
This function can only be activated at manufacturer or higher access levels. To select the commands, use the
Debug menu.
The browser enables to:

· position the cursor in the line where a function, or a module, group or library variable or a module or
group constant is first defined (from the menu Debug->Go to definition)

· position the cursor in the lines where a function, a device, a module or group variable or a GPL
instruction (except for FCALL and FRET instructions) is mentioned. (From the menu Debug->Go to
reference, to display the previous reference or the next one select from the menu respectively the
options Debug->Previous or Debug->Next)

Group variables can only be managed from the edit window of the group they belong to.
To update the browser when switching to a new version, it is advisable to save the global variables first, and
then execute the command File->Compile All.
When editing the functions, the link between text and symbols is lost. The link is reestablished in the filing
stage.

Source browser8.7.2

This command can be selected from the menu Debug->Source browser. The identifier search opens a dialog
window that allows to insert the name of the symbol to be found in the GPL code. According to the selected
Type of search, this function will find either the definition or the first reference to the symbol.

The inserted name can have the following characteristics:
· if it contains no "." (period) character: the name is searched for in all the function files.
· if it contains only one "." (period) character: the name preceding the period is identified as the name of

the group, and the symbol will only be looked for in that group. For example, if a VisError function has
been defined both in the MAIN group and in the AXES group, when a search is called for AXES.VisError,
the cursor will go to the first row of the VisError function in the AXES group.

· if it contains two "." (period) characters: the name preceding the first period is identified as the name of
the group and the one preceding the second period is identified as the name of the subgroup. The
symbol will only be searched for in that subgroup.

Development tools 79

Numeric control

· if it ends with an "*" (asterisk) character the search will include all the symbols beginning with the
characters preceding the asterisk.

In case of ambiguity in the search for a symbol, a dialog window is opened displaying all the symbols with the
requested name. From this window it is possible to select the required symbol.

Below is a description of the special symbols used in the list for the identifier selection.

Symbol Description

GPL instruction
module or group or library constant
module or group variable
library variable

library vector

library matrix
library function

group message

label

local variable

local vector

local matrix

single parameter

array parameter

matrix parameter

Available keyboard shortcut list8.7.3

To enable the Browser commands, select the menu items Debug or type directly on the keyboard.
The keyboard shortcuts are as follows:

Key Description
F2 positions the cursor on the line where the selected symbol is

defined. If the browser data-base contains several symbols with
the requested name, a dialog window opens to allow the user to
select the required symbol.

Shift+F2 positions the cursor on the first reference to the selected symbol.
In case of ambiguity a dialog window opens to allow the user to
select the required symbol.

Ctrl+F2 opens a dialog window for the selection of the required symbol.
Ctrl+'+' or Ctrl+PgUp positions the cursor on the following reference (use the "+" on

the numeric pad)
Ctrl+'-' or Ctrl+PgDown positions the cursor on the previous reference (use the "-" on the

numeric pad)

Albatros80

Numeric control

9 Accessory programs

9.1 XConfMerge: program to merge the configuration file

XConfMerge is a tool that performs the merging of the configuration files. It is run from the command line of
the bin folder, as XConfMerge reads the file tpa.ini.

The files read by XConfMerge are:
· hardware.xconf: it contains the data of the virtual-physical and of the hardware configuration (physical)
· devices.xconf: it contains the data of the configuration of groups, subgroups, and devices (logical)
· devices.xmlng: it contains the translatable messages. Anyhow, all language files present in the folder

are considered
· addresses.xdb: it contains the logical addresses of the devices.

The arguments to be passed are:
· the folder from which to read the new files
· the number of module to which the custom refers. If no number is indicated, 0 is considered as default.

The path from which to read the file that is to be updated, that is the same on which to write the file gotten
through the merging procedure, is inferred from the data set in tpa.ini.

Warning: the files to be updated are overwritten and no automatic backup is carried out.

Merging rules of the configuration files of groups:

1. if in both files there is the same group, subgroup, or device, the data and activation of the old file are
kept.

2. if the group, subgroup, or device is only in the new file, the data and activations are copied.

3. if the group, subgroup, or device is only in the old file, this is cancelled.

Merging rules of the hardware and virtual-physical configuration file:

1. if in both files there is the same hardware, the hardware and the virtual-physical of the new file are
kept with the activations defined in the old file.

2. if the hardware is only in the new file, the new hardware is kept with its activation and its new virtual-
physical.

3. if the hardware is only in the old file, it is cancelled together with the virtual-physical.

Merging rules of the logical address files:

1. if the file is not in the folder of the files to be imported, then the custom logical addresses are kept and
new addresses are assigned to the new devices, if there are any.

2. if the file is in the folder of the files to be imported, then the logical addresses contained in it are read
and used.

Merging rules of the message files:

1. No merging is carried out, but the new message file is copied in the module folder.

At the end of the execution, the merging tool returns the following values:

0 all is OK

1 the file merging was unsuccessful

2 no arguments were defined

Accessory programs 81

Numeric control

3 the module number entered as argument is wrong

4 the folder indicated as first argument does not exist

9.2 XParMerge: program to merge two parameter files

XParMerge is a tool that performs the merging of the parameter files.

It is run from command line on the bin folder, as XParMerge reads the file tpa.ini. The arguments to be passed
are: the name of the new file and the number of the module it refers to.

The path from which to read the file to be updated and the one on which to write the file, gotten with the
merging procedure, is inferred from the data set in tpa.ini.

Warning: no automatic backup of the old parameter file is performed, but it is overwritten.

Merging rule of Technological Parameter files:

1) if there is the same control in both files, the value of the old file is kept, but the other parameters defining it
are updated (disabled, visible, GPL variable name.....) taking them from the new file:

2) if a control is defined in the new file that does not exist in the old file, the control is kept;

3) if a control is defined in the old file that does not exist in the new file, the control is cancelled.

Merging rules of Tool Parameter files:

1) if the reference dialog of the new file is different from the reference dialog of the old file, all the dialogs of
the new file are kept, if there are and the ones of the old file are updated (new controls removed or added);

2) if the reference dialog of the new file is the same as the reference dialog of the old file, the dialogs of the
new are added to the dialog of the old;

3) if the reference dialog is only present in the old file, this and its dialogs are cancelled.

Albatros82

Numeric control

10 GPL Language

10.1 Basic Features

Introduction to GPL language10.1.1

GPL language (General Purpose Language) is the language used to create functions in the Albatros system.

Although its structure, for some aspects, is similar to BASIC, it is characterised by a large number of device
control instructions.
The language is composed of more than 200 instructions, called instruction, which have been divided into
groups of instructions with similar functions, for your convenience.
Moreover, the language is multitasking, allowing the execution of various tasks at the same time.

Typical Syntax of GPL instructions
GPL instructions all have a similar structure, corresponding to the following pattern:

instructionname parameter-1, parameter-2,..... parameter-N

The number of parameters depends on the instruction and the contest in which it is used, the absolute
maximum paremeters number for a function or an instruction is 120. In certain cases the instruction may not
contain any parameters at all.

The smallest block of GPL code is the function.

Dividing the code into groups
The GPL code is subdivided into blocks that reflect the logic subdivision of the machine into groups. This
means that each group has a corresponding file containing its code. To these files, containing the code of the
groups present in the machine, we must add the file containing the global variables and constants which are
visible from any group's GPL code and the libraries. These contain code not related to machine configuration
hence easily portable to other machines.

Conventions and terminology10.1.2

Main adopted terms

ARGUMENT One of the arguments of the instructions; it can be defined as constant,
variable, or parameter, depending on the kind of instruction; if between
square brackets ([]) it means that it may be omitted, implying that
the instruction can be executed in a different way.

KEYWORD An argument to be chosen among the arguments with a predetermined
value, normally written in capital letters; the list of keywords is
provided in a specific help page.

PARAMETER The argument of an instruction which is not defined within the
instruction, but is passed to the function, precisely as a parameter,
when the function is executed; in certain cases it is also called
parametrised argument.

CONSTANT A fixed argument defined by means of the CONST meta-control or an
argument which is rigidly fixed within the instruction.

VARIABLE An argument defined as machine or group global variable or defined by
a LOCAL instruction, which can be organised as simple variable, vector
or matrix. See variables.

CONFIGURATION PARAMETER An argument defined in configuration, such as the parameters of an
axis, for example.

Most frequent arguments in instruction descriptions

The list below contains the terms relating to arguments which are frequently used in GPL instruction syntax.
Each one is followed by a brief description. In cases in which an argument can assume a different value from
the one described below, its description continues in the arguments section of the instruction's help page.

GPL Language 83

Numeric control

inputname name of digital input device
outputname name of digital output device
flagname name of flag switch or flag bit device
portname name of input port, output port or flag port device
timername name of timer device
countername name of counter device
functionname name of a function (also valid as device parameter in the case of ERRSYS.)
subprogramname name of a subprogram, it is the equivalent of label to which we refer to for

explanations; to call a subprogram, use the instruction "CALL
subprogramname".

axis name of an axis
constant a character, an integer or double number, or a keyword
value constant or variable (the type depends on the instruction)
variable name of: variable, vector element or matrix element
variabledevice name of device parameter
matrix name of a matrix
vector name of a vector
label name of the jump label or name of a subprogram.
status logic status, options: ON or OFF, or 1 or 0
timeout amount of time within which something has to happen, or a delay time

(constant or variable)
position coordinates of the position (double constant or double variable)
radius value of the radius (double constant or double variable)
angle value of the angle (double constant or double variable)
numrev number of revolutions (double constant or double variable)
speed value of speed (float constant or float variable)
direction clock or anti clockwise rotation (variable or constant: CW o CCW)
operand (constant o variable o devicename)
result result of the operation (variable or devicename)
devicename name of any type of device (or device parameter)
constantstr sequence of characters in inverted commas (ex. "string")
variablestr the name of a character vector, namely a string
operator comparison operators:

> (greater than)
= (equal to)
< (less than)

they can also be used in combination, for ex. >= (meaning: greater or equal
to)

type type of constant or variable:
"char" (8 bit), "integer" (32 bit), "float" (32 bit), "double" (64 bit), "string"

device parameter is a variable that stands for a device. The devices are defined in Configuration.

Main terms used for axes

target position Current "theoretical" position set, second by second, by the numerical control
on the basis of the algorithm of speed profile generation.

real position Real position of the axis as detected by the position transducer. The difference
between the real position and the theoretical position is known as "tracking
error" or "loop error".

final position It corresponds to the programmed arrival position of a movement. The
calculation algorithm of the speed profile enables the theoretical position to
reach exactly the final value.

arrival threshold Programmable interval whose central point corresponds to the final theoretical
position: when the real position enters this area, the movement is considered
concluded.

arrival high threshold Position arrival window multiplied by a factor to be set by means of the
instruction SETBIGWINFACTOR.

loop error The difference, second after second, between the theoretical position and the
real position of an axis: it is usually proportional to translation speed and
inversely proportional to the "proportional loop gain".

Albatros84

Numeric control

proportional [loop] gain Axis regulation parameter, programmable: it determines the ratio betweenn the
current speed and the relative loop error.

feed forward Axis regulation parameter, programmable: it determines a direct contribution
(proportional to programmed speed) injected on the drive speed control. It
allows to reduce, at equal speed and equal proportional gain, the value of the
loop error.

feed rate override Percentage of programmed speed. This parameter allows to reduce execution
speed, compared to programmed speed, by a percentage ranging between 0%
and 100%.

tolerance Move value according to which the axis moves away from the original trajectory
in a multi-axis interpolation between two consecutive blocs of displacement.

backlash Space between the cogs of a couple of gears.

Variables10.1.3

Variables are information containers which in the GPL language are used to store all the values necessary for
program functioning.
Variables are characterised by a "type" that indicates the kind of information they contain. Moreover each
variable has a specific visibility which determines which code groups or subgroups can operate (read or write)
on it.

Type of data

SIMPLE OR SCALAR DATA
GPL supports both simple and aggregate data. The types of simple data are similar to the ones used in most
programming languages:

Char
Is an integer with sign ranging between [-128 ; +127] and its length is 1 byte.
To declare a Char variable, the following syntax is used:

VariableName as char

Integer
Is an integer with sign ranging between [-2147483647 ; +2147483647] and its length is 4 byte (it
corresponds to the long type in C).
To declare an Integer variable, the following syntax is used:

VariableName as integer

Float
Is a floating point number ranging between [-3,402823 E+38 ; -1,401298 E-45] and [+1,401298 E-45 ;
+3,402823 E+38], its length is 4 byte (it is usually used to indicate speed).
To declare a Float variable, the following syntax is used:

VariableName as float

Double
Is a floating point number ranging between [-1,79769313486231 E+308 ; -4,94065645841247 E-324]
and [4,94065645841247 E-324 ; 1,79769313486231 E+308], its length is 8 byte (it is usually used to
indicate positions)
To declare a Double variable, the following syntax is used:

VariableName as double

These types of data can be used together in one expression. The GPL converts them automatically without
giving any warning messages. For this reason, when using different types of data in the same expression, it is
advisable to check that no information has gone lost.
In certain situations conversion is not allowed. In this case the compiler usually sends an alert message or a
system error occurs.

AGGREGATE DATA

GPL Language 85

Numeric control

Array
It is a group of simple variables, all of the same type, obtained by associating an index to the name of the
variable. The index must be enclosed in square brackets. If the array is called, for example, "parameters",
the first item of the group will be called "parameters[1]", the second "parameters[2]", and so on.
The array has a fixed number of items which must be determined in the declaration. A typical array
declaration uses the following syntax:

parameters[10] as integer

Where parameters[10] indicates that the name of the array is "parameters" and that it's composed by 10

items; as integer indicates the type of simple data used for the array's individual elements, which in this

case is an integer.
The arrays can be made up of simple data or strings.
An array can have a maximum of 262144 elements.
Vectors can be directly initialized in the GPL code, at the time of their declaration. GPL syntax can be:
[READONLY] vector[numberofrows] as integer = 1,2,3,4
[READONLY] vector[numberofrows] as string = "one","two","three","four"

Matrixes
Matrixes are bidimensional arrays, that is, variables with two indexes. A matrix can be visualized as a table
divided into rows and columns. To indicate a cell on the table, we can indicate in which row and which
column it is. The first index indicates the number of the row and the second the number of the column.
Unlike arrays, matrixes can contain different types of data, but with the following restriction: we may use a
different type of simple data for each column but it is not possible to vary within the column.
For example we can define a matrix in which the first column is integer type and the second is float type.
However we can not have a matrix where the first row is occupied by an integer and a float and the
second by a char and a double. In the rows, the elements must all be composed by the same type of
data.
The declaration of a matrix can be written using the following syntax:

offset[10] as double double double

dim_part[50] as float:length float:width float:thickness

In the second type of declaration a label or symbolic name is given to each column. The symbolic names of
the columns are very useful when working with large matrixes, as in this kind of situation it s difficult to
remember the values memorised inside each column of the matrix. The symbolic name allows us to
identify immediately the type of data we are working with. For ex. " "Offset[1][3]" is not as clear as
"Offset[1].axis_X".
Matrixes can only contain simple data. For example, it is not possible to create matrixes containing strings.
The maximum number of rows in a matrix is 262144.
Matrices can be directly initialized in the GPL code, at the time of their declaration. GPL syntax can be:
[READONLY] matrixname[numberofrows] as double double integer double = _

1.1, 2.2, 3, 0.1 _
1.2, 3.4, 5, 0.1 _
2.1, 5.6, 6, 0.1

Strings
Strings are groups of characters, that is char data. However, because they represent legible text, they are
treated in a special way.
A string is very similar to a char array. The main difference is given by the presence of a terminating
character, which is automatically added at the end of the string. The GPL also provides some instructions
which allow to manipulate the strings.
Usually strings are used to write messages, which the user can read on the screen or in a report file.
To declare a String variable, the following syntax is usually used:

VariableName as String

To declare a String variable, the following syntaxes may be used:

VariableName as String

VariableName[20] as String

In the first declaration the string assumes a default size of 256 bytes. In the second case a maximum
string size is defined.

Albatros86

Numeric control

The string values are sequences of characters delimited by double quotation marks. Example: “Press
the button”.
To enter the ‘”’ character (double quotation mark), enter it twice. Example: Press the “”Start”””.
button.
To enter characters using the numerical code, write inside the string the \u characters followed by the
numerical value of the hexadecimal character. Example: \u20ac is the symbol of Euro. If you write
“\u20ac 15,6”, you get € 15,6.

Data conversion

In all mathematical expressions, but EXPR instruction, the types of data of the operands are converted
according to the type of data of the result variable and then the operation is executed. It is important to pay
attention to the declaration of types of data, because they can influence the result. Following table is an
example of how the results based on the type of data given may change:

DIV Operand 1(Integer) Operand 2(Double) Result (char)
3 5.0 0
5 1.9 5
1200 107.2 Undefined
1200 250.0 Undefined

DIV Operand 1(Double) Operand 2(Double) Result (Double)
3 5.0 0.6
5 1.9 2.631
1200 107.2 11.194
1200 250.0 4.8

In the EXPR instruction, if the operands are not of the same type, an automatic conversion is carried out and
the type of the result of the operation is the same as the greater one of the two results, according the
following rule:
· char <integer
· float < double
· char or integer < float or double.

After resolving the expression, the result is converted according to the type of the result variable.

EXPR Operand 1(Double) + Operand
2(Integer)

/ Operand 3(Float)Result (Integer)

900.0 + 100 / 400.0 900

EXPR Operand 1(Double) + Operand
2(Integer)

/ Operando 3
(Float)

Result (Double)

900.0 + 100 / 400.0 900.25

Declaration and Visibility of the variables

Variables and constants can only be declared in specific parts of the GPL code.
We can classify as variables:

· Module globals
· Group globals
· Locals (variables only)
· Library globals

A maximum of 2048 variables (module and group) can be declared.

It is possible to define some modifiers that assign additional characteristics to the variables.

Module global variables
Module global variables are grouped in a special file which is accessed by selecting the menu option File-
>Open Global Variables.
The declaration is performed, as shown in previous paragraphs, by specifying the name of the variable,
followed by the keyword "AS", followed by the type of data (or types of data in the case of matrixes).
These variables are visible directly from the code of all the groups.

Group global variables
Group global variables are defined at the beginning of the group code. They must be declared before the
GPL functions.
These variables are directly visible from the integer code inside the group. Moreover it is possible to extend
the visibility of these variables outside the group by declaring them as "Public" variables.
Public variables are not directly accessible from outside the group. To access them, we have to use their
name preceded by the name of the group they belong to. For example, if we want to modify the "offset"

GPL Language 87

Numeric control

public variable, belonging to the "axes" group, from the code of the "Main" group, we will write "SETVAL 10
axes.offset".
To declare a group global variable, the same syntax used for module global variables is used. The main
difference lies in the definition of public variables. To define one or more public or private variables use the
labels "Public" and "Private". For example:

Public:
offset as double
speed as float

Private:
tool as integer

Local Variables
Local variables are declared in the body of a function. They must be declared before any other instruction,
except for the declaration of the function's parameters.
Local variables are only accessible from inside the function.
These variables are created with a 0 value (the necessary memory is allotted) only at the beginning of
function execution and are destroyed (the memory is released) at the end of execution. Global variables, on
the other hand, are created when the module is initialized and are always visible in "Diagnostic".
The declaration of a local variable uses the syntax we have already seen, but is preceded by the keyword
"LOCAL".
For example:

Function processing
local position_centre_ as double
movabs X,position_centre
fret

Library global variables
Library global variables are declared in GPL code libraries. They are similar to group global variables.

Modifiers

Modifiers: READONLY
Module and group global variables can be declared as READONLY.
A readonly variable is a variable whose value can not be modified by the GPL code, although it can be modified
from "outside", that is by Albatros technological parameter file.
The technological parameters file is a database which stores the values that characterize the machine but could
vary in the long term if the machine were modified or in case of extraordinary maintenance. This data is
normally inserted in a GPL matrix during control initialization.
Examples of this type of information are the machining area offsets or the dimensions and technological
parameters of the tools.
By declaring these variables as readonly we avoid accidental modifications of the information which shouldn't
vary during normal machine functioning.
The maximum size of a readonly variable is 128 Kbytes.
To declare a readonly variable, the following syntax is used:

readonly VariableName as type

Modifiers: NONVOLATILE

Variables declared as NONVOLATILE class are memorized on the non volatile RAM (provided with batteries)
instead of the normal RAM. Consequently the values stored in these variables are not lost when the numerical
control is switched off.
For the declaration of a nonvolatile variable, the following syntax is used:

nonvolatile VariableName as type

For example:
nonvolatile OffsetArea[2] as double:offsetX double:offsetY double:offsetZ

Only group and machine global variables can be classified as "nonvolatile".
The maximum size of variables memorized on nonvolatile RAM is 65536 bytes. The maximum size of a single
non volatile matrix is 1024 bytes.

Assigning a RANGE

When formulating a declaration, it is possible to assign a range of values to the variable. However, at the
moment, there is no control of limit observance in the execution phase, except for a compiler control in the
case of constant values (for ex. to initialize the variable).

Albatros88

Numeric control

Consequently, the main advantage is constituted by a sort of code auto documentation.
For the definition of ranges, the following syntax is used:

VariableName Range:minval..maxval AS type

For example:
ToolNumber Range:1..100 as integer

Writing and Reading Rights

Writing and reading rights allow to specify the minimum access level to the system, necessary to display (read
right) and modify (write right) its value.
The syntax used is:

VariableName Read=S Write=M AS type

The keywords used to specify the rights are:

· READ reading

· WRITE writing

The values which can be assigned are:

· U or USER user

· S or SERVICE service

· M or MANUFACTURER manufacturer

· T or TPA tpa

The default values are:

· READ reading for service (S or SERVICE)

· WRITE writing for manufacturer (M or MANUFACTURER) and TPA (T or TPA)

Constants

GPL uses four types of constants:
· Integer
· Double
· Char
· String

Char constants are declared by using inverted commas, as below:

Const COD = 'A'

String constants are declared by using inverted commas, as below:

Const MSG = "Start processing"

For Integer constants and Double constants the following syntax is used:

Const PI = 3.14
Const MSGBOX = 12

For Integer constants a binary and hexadecimal notation is allowed:

Const MASK = $11001001b ; binary
Const MASK = $F5h ; hexadecimal

Also group and library constants can be public or private.
The sintax is similar to variables' one.
Example:

Public:
Const PI = 3.14
Const MSGBOX = 12

Private:
Const MASK = $11001001b

GPL Language 89

Numeric control

NOTE: Float constants do not exist. Decimal numbers must necessarily be declared as Double. In certain cases
this might cause alert messages from the compiler (when optimized GPL instructions are used for Float types).

The constants can be defined as the result of calculation expressions, with the following syntax:

Const a = 10
Const b = 20
Const c = a + b

Allowed operators are the same as those used in the EXPR instruction.

Predefined constants10.1.4

The GPL language has some predefined constants, which can be used directly without having to define them.
The predefined constants and their respective values are:

ON 1

OFF 0

UP +1

DOWN -1

POSITIVE +1

NEGATIVE -1

CW 1

CCW 0

TRUE 1

FALSE 0

NOWAIT 0

WAIT 1

WAITACK 2

STORE 1

NOSTORE 0

NOPLACE 0

COM1 0

COM2 1

COM3 2

COM4 3

COM5 4

COM6 5

COM7 6

COM8 7

NOPARITY 0

ODDPARITY 1

EVENPARITY 2

Keywords10.1.5

Keywords are identifiers with a specific function and can not be used in any other way.

The available keywords are:

All the names of GPL instructions See the "Instructions" part of the manual for the description of all
GPL instructions

All kinds of data See Variables

Device parameters See Device parameters

EXIST Used in IFDEF instructions to verify the existence of a group. See
IFDEF instruction

NOTEXIST Used in IFDEF instructions to verify the non existence of a group.
See IFDEF instruction

LINKED used in the IFDEF instruction to enable the compilation of code
blocks, if the device is connected in virtual-physical. See IFDEF
instruction.

Albatros90

Numeric control

UNLINKED used in the IFDEF instruction to enable the compilation of block
codes, if the device is not connected in vitual-physical. See IFDEF
instruction.

_ID_MODULE Used in the IFDEF instruction to verify the current module
number. See the instruction IFDEF

_REMOTE_MODULE Used in the IFDEF instruction to verify if the connected module is a
remote module (value=1). See instruction IFDEF

_VER_MAJOR Used in IFDEF instruction to verify the main version number of
Albatros. See instruction IFDEF

_VER_MINOR Used in the IFDEF instruction to verify the secondary version
number of Albatros. See instruction IFDEF

_VER_REVISION Used in the IFDEF instruction to verify the revision number of
Albatros. See instruction IFDEF

_VER_SP Used in the IFDEF instruction to verify the service pack of
Albatros. See instructio IFDEF

_VER_FULL Used in the IFDEF instruction to verify the service pack of
Albatros. See instruction IFDEF

FUNCTION Declaration of a function. See Functions

AS Used for variable declarations. See Variables

PUBLIC An attribute of functions. See Functions

AUTORUN An attribute of functions. It indicates that the function runs
automatically. See Functions

R= or READ An attribute of functions or variables. It indicates the read access
level. See Functions, Variables and Access rights

W= or WRITE An attribute of functions or variables. It indicates the write access
level. See Functions, Variables and Access rights

CONST It allows to assign a significant name, called symbolic constant,
instead of a number, character or string. See Variables

READONLY An attribute of global variables. See Variables

NONVOLATILE An attribute of global variables. See Variables

PRIVATE An attribute of functions. See Functions

RANGE Used for the definition of an interval of values for variables. See
Variables

USER An attribute of functions or variables. It indicates the type of
access. In this case user. See Functions or Variables

SERVICE An attribute of functions or variables. It indicates the type of
access. In this case service. See Functions or Variables

MANUFACTURER An attribute of functions or variables. It indicates the type of
access. In this case manufacturer. See Functions or Variables

TPA An attribute of functions or variables. It indicates the type of
access. In this case TPA. See Functions or Variables

Functions10.1.6

Functions are the smallest block of GPL code. GPL instructions can not be inserted in a file in sequence, they
have to be grouped in functions. The maximum number of declarable functions is 8191.

GPL Language 91

Numeric control

As far as the compiler is concerned, a function is any block of GPL code beginning with a line whose first word
is FUNCTION. However, there is no keyword indicating the end of the text of a function: the function ends with
the line preceding the beginning of another function or with the end of the file containing the functions.

The syntax used to define a function is:

FUNCTION FunctionName Attributes
Parameters
Local Variables
List of GPL instructions

A function is also a special type of Albatros device. It shares some properties with the devices: a univocal
name (untranslatable), a visibility indicator (whether the device is public or not), an access rights for reading
and an access level for writing (see next paragraph).

Access rights
Access rights allow to specify the minimum access level to the system necessary to allow visibility (read right)
and execution (write right).
The syntax used is the following:

Function FunctionName READ=S WRITE=M

The rights are identified by the keywords READ (reading) and WRITE (execution)
Assignable values, corresponding to the various access levels, are:

· U or USER user

· S or SERVICE service

· M or MANUFACTURER manufacturer

· T or TPA TPA

The default values are:

· READ reading for service (S or SERVICE)

· WRITE writing for manufacturer (M or MANUFACTURER) and TPA (T or TPA)

Autorun Functions
Autorun functions are executed automatically when the machine is booted.
Autorun functions have a characteristic: they are restarted automatically after being closed down because of a
system error.
The syntax used is the following:

Function FunctionName autorun

So it is sufficient to add the modifier "autorun" to the declaration of the function.

Public Functions
Normally a function can only be executed (called) by the code inside the group file. To make it possible for a
function to be executed by the GPL code of a different group, the function must be defined as public. The
syntax used to define a public function is the following:

Function FunctionName public

So it is sufficient to add the modifier "public" to the declaration of the function.
Functions belonging to the intergroup are an exception, as they are always public.

Subgroup Functions
A function can be connected to a subgroup simply by putting the name of the subgroup in front of the name of
the function. The subgroup and the function's name must be separated by a full stop ".". For example the
following function belongs to "X" subgroup of the "Axes" group.

Function X.homing
local vel as float
movabs X,100
waitstill X

Fret

Asynchronous Functions
Asynchronous functions are automatically called by the numerical control when the event connected to the
function takes place.
Three types of events are possible:

· Change of status of a digital input: instruction ONINPUT

Albatros92

Numeric control

· Change of status of a flag bit or flag switch: instruction ONFLAG
· System error: instruction ONERRSYS

When the event takes place, the function is called (not as autonomous task but in the context of the task in
which the corresponding ON… instruction was executed) as implicit FCALL, as soon as the current instruction
has terminated execution.
Typically, asynchronous functions are used to resolve emergency situations, and they must be extremely fast.
For this reason, these functions cannot use just any GPL instruction; they use a subgroup which guarantees
short execution times.

Functions with input parameters (parametric)
A function can have some parameters declared in input, without ever returning any values.
These parameters can be considered as special local variables whose value is initialized externally the moment
the function is executed. The parameters are indicated with the keyword PARAM and use the same syntax used
for local parameters. The parameters must be listed in the first lines of the body of the function, before any
other instruction and before the local variables.

There are two ways the parameters can be passed:
· by value: all simple data types are passed by value, that is CHAR, INTEGER, FLOAT and DOUBLE. Passing

by reference means that a copy of the original value is created. Changes made to the parameter only have
an effect in the context of the function.

· by reference: aggregate data types are passed by reference, that is ARRAY, MATRIXES and STRINGS.
Passing by reference means using the source variable; consequently the changes made to the parameter
have an effect in the context of the calling function. This characteristic can be exploited to send return
values back to the calling function.

Typically a function is sent in execution with the instruction FCALL. If the concerned function is a parametric
function, the list of values to be given to the parameters must be specified after the name.
In the following example we find a parametric function executing a perforation operation. The coordinates of
the centre of the hole and feed speed of the Z-axis are passed to the function as parameters.

Function Perforation
Param Qx as Double ; position X of the centre of the hole
Param Qy as Double
Param vel as Float ; feed speed

Movabs X, Qx, Y, Qy
Waitstill X,Y
……
Fret

This function call, for example to make a hole in the position (12.5 , 25.7), with a feed speed of 3m per
minute, could be written in the following way:

Fcall Perforation 12.5, 25.7, 3.0

The parameters passed to the function must match in name and type, those declared in the call function. The
execution of the call function restarts at the end of the called function.
It is also possible to declare a device as a function parameter. This enables to write general use functions, such
as, for instance, a homing function, to be used with all the axes in the machine:

Function HOMING PUBLIC
param axis as Axis
movabs axis,100

Fret

Function MAIN
……
Axes.Homing x

Fret

The homing function belongs to the Axes group and is declared PUBLIC to allow it to be seen by the functions
declared in other groups. The Main function calls the axes group homing function, specifying the axis which has
to be moved as an input parameter.

Device parameters10.1.7

Device type parameters are special variables which allow to call a machine device.
This kind of data can be used exclusively in the declaration of function parameters. So it is not possible to
declare variables of this type. The definition of names and other characteristics of the devices pertain to
System Configuration.

GPL Language 93

Numeric control

The following table contains the type of Device and the relative keywords to be used for the declaration of the
parameters.

Type Keyword
Digital input INPUTDIG
Digital output OUTPUTDIG
Analog input INPUTANALOG
Analog output OUTPUTANALOG
Axis AXIS
Timer TIMER
Counter COUNTER
Flag bit FLAGBIT
Flag switch FLAGSWITCH
Flag port FLAGPORT
Input port INPUTPORT
Output port OUTPUTPORT
Function FUNCTION
Generic device DEVICE
Task TASK

Example of axis parameter declaration and use:

Function test
Param axis as axis

MovAbs axis,100
WaitStill axis

Fret

Multitasking10.1.8

As the system is multitasking, it is possible to have more than one GPL task in progress at the same time, and
by task we intend the handling process of a logic entity (usually a group).

There are two types of task available: normal tasks and real-time tasks.

Normal tasks
Multitasking is based on a cooperative algorithm based on priorities. This guarantees that all the tasks are
executed cyclically, varying their priority. The scheduling algorithm ensures that one instruction is executed for
each active task (running status). Every task has a priority set using the instruction SETPRIORITYLEVEL
assigned to it. The priority is identified by a whole number between 0 (highest priority and 255 (lowest
priority). For tasks with a priority of 0 (zero) an instruction is carried out every scheduling cycle, for tasks with
a priority of 1 an instruction is executed every two scheduling cycles and so on up to tasks with a priority of
255 for an instruction is carried out every 256 scheduling cycles.

The execution of normal tasks is asynchronous with respect to the frequency of refresh of the axes. This
means that there is no guarantee that a GPL function will be completed in the time span between two updates
of the status of the axes.

A task is identified by the name of the GPL function from which its execution starts.
The execution of a task can begin:
· automatically with the initialisation of the system: main intergroup function and autorun functions;
· following the execution of a STARTTASK execution;
· following the triggering of Albatros in manual mode using the graphics interface.

Each task is characterised by an internal status:

RUNNING The task is running
HOLD The task is suspended
BREAK The task has been interrupted by the debugger

Tasks are organised hierarchically in a tree structure. Each task is created by another, which means that if the
mother task finishes, all the child tasks will also be terminated.
The maximum number of tasks in execution at the same time is 500.
It must be considered that an high number of running tasks implies a decrease in speed, at which every single
task is performed.
If the application to be made is supposed to imply the use of a number of tasks higher than 200, the operator
should use a proper hardware such as CN2128.

Albatros94

Numeric control

Real-time tasks
Real-time tasks differ from the foregoing in that they are not subject to a scheduling procedure nor are they
arranged by priority, but are executed completely with each update of the status of the axes (axis real-time).

It is absolutely necessary for the execution of these tasks to end by a set time because the execution of the
GPL tasks described earlier remains on hold while the real-time tasks are being run.
The system runs checks on the execution time of real-time tasks and should these exceed the maximum time
allowed the system generates an error.
It is therefore not advisable to create infinite cycles (e.g. using GOTO instructions) within these tasks; cycles,
moreover, are not necessary given that the execution of the code starts again from the beginning with each
axes real-time task.
In order to avoid excessively long execution times real-time task use is limited to some GPL instructions. The
instructions whose use is not allowed are those that cannot be used on interrupt.

We advise using real-time tasks only for those activities that must of necessity be carried out synchronously
with the update of the axis positions. For most control activities it is better to use normal tasks.

Real-time tasks are sent with the instruction STARTREALTIMETASK and can be interrupted with the instruction
ENDREALTIMETASK. Up to 256 real-time tasks can be activated at the same time.
The tree structure is no longer applicable, so if the task creating a real-time task ends, the real-time task will
still run.
The local variables declared in the real-time task are initialized only by the start of the task and then they
maintain the value of the last run.

Real-time tasks are not characterized by typical status of normal tasks. A real-time task can be debugged, but
when this happens the system automatically declasses the task to a "normal task" for the duration of the
debug.

If a system error is detected in a real-time task, the task is declassed to a normal task and it is put on HOLD to
allow it to be analysed with the debugger.

Communications10.1.9

Communications between the GPL and the outside world occur in three different ways:
· SEND / RECEIVE
· Serial communication
· IPC

Send / Receive
The instructions SEND and RECEIVE implement a message-orientated communication mechanism.
The communication may occur within the same module (of little advantage), between different modules of a
line or between the modules and the supervisor Albatros or with OLE applications.
The way it works is similar to e-mails; for every message there is an addressee, an identifier of the
information sent (or requested), the information itself plus the service information. Albatros performs the
collect and sorting function of the information and in some cases directly supplies the information requested.
This mode of communication is normally used to send working programmes between the supervisor and the
control units, to synchronize the activity of the machines of a line and to interface with external applications
(OLE server).

Serial communication
The GPL language supplies some instructions, for example, COMREAD and COMWRITE, that make it possible
to send and receive data via the serial ports of the numerical control. It is thus possible to interface the
control with external devices like inverters, terminals or PLCs. When correctly used these instructions make it
possible to implement serial communication protocols like MODBUS-RTU etc.

IPC
IPC or Inter Process Communication is a communication mode between processes. In particular, this mode
allows an area of memory to be defined which is shared by two or more processes and can be used for data
exchange.

Typically it is used when the performances supplied by the Albatros OLE interface are not adequate.

On the GPL side IPC communication is implemented using the instructions SENDIPC, WAITIPC and TESTIPC.
In case of the local module the external processes may refer to the APIs supplied by RTX or to the COM
component gplipc2.dll provided by TPA which makes its use easier.

In the case of a remote module, the processes running in the supervisor use the COM component

gplipc2net.dll.

GPL Language 95

Numeric control

For further information, please contact TPA.

Variables used in programming10.1.10

Most instructions have been written so as to allow operating with various types of variables (CHAR, INTEGER,
FLOAT, DOUBLE). However, each instruction has been optimised for a specific variable. For the best
performance during GPL code execution, we advise using the type of variable suggested in the description of
each instruction. In general, we suggest following the table below, which associates the main quantities used in
programming to the relative optimal types:

quantity type
position double
speed float
time double
counter integer
value port/flag port integer
timeout double
analog input/output float
director cosines double
string control character char
acceleration/deceleration integer

Axes10.1.11

The term "axis" normally indicates an electromechanical system whose function is the controlled movement of
a part of a tool machine.
Describing this system from the point of view of its components, we can subdivide them according to their
technological characteristics.
The mechanical components are:

· frame
· guides
· bearings
· screws + ball screws

whose function is to contrast the forces involved, reduce friction, turn rotational motion into translation motion,
etc.
The electric and electronic components are:

· motor
· end run switches
· encoder
· tachimetric dynamo

whose function is to provide the necessary power for movement and detect the status of the system.
These elements are connected so as to allow controlled execution of movements.

The function of the numerical control is to control the position and the movement of the axes.

Axis movement can be broken up into 5 phases:

Albatros96

Numeric control

Acceleration initial phase during which the speed of the axis is gradually increased, until it reaches
programmed speed.

Regime intermediate phase during which the axis moves at constant speed (this phase may be
omitted if the space to be covered is smaller than the space covered in acceleration and
deceleration phases).

Deceleration phase during which the axis reduces its speed back to 0

Window pause, while the loop error is reduced to the value indicated in configuration as "arrival
position window"

Position end of movement

At the end of the movement the axis will have to be positioned within an interval called "arrival position
window" (that determines tolerance for axis positioning). If this is not done within 5 seconds of expected end
of movement, the system generates a "not ended movement" system error.

For each movement the numerical control calculates a speed profile like the one shown in the figure above. It
then calculates the target positions by subdividing the speed profile in time intervals equivalent to axis
refreshment time and calculating the area of each part. The area corresponds to the position increase which
the axis has to reach in that space of time to comply with the above mentioned speed profile.

Axis control is implemented by means of a PID controller that "closes the position loop", meaning that, when
the machine starts, it provides a speed reference calculated on the basis of the position that has to be reached
(target position) and the real position read by the encoder. The difference between the real position and the
target position is called Loop Error.

GPL Language 97

Numeric control

Diagram of Albatros axis control

Linearity correctors10.1.12

The table of an axis linearity correctors is seen as a matrix, whose name is
GroupName.SubgroupName.AxisName#correctors, or GroupName.AxisName#correctors, and it can be used in
all the instructions that have access to matrices, matrix elements, and matrix rows.

The number of matrix columns corresponds to the number of axes that were set in the linearity corrector
window, in the axis configuration. The automatic correctors are entered in the first column. All the correction
values are float. The number of total matrix rows can be obtained through the GPL instruction LASTELEM.

These matrices can be accessed both in reading and in writing and, if modified, their values are immediately
used to correct the position, only if the correction is enabled.

Example:

Function ReadCorr
local i as integer
local j as integer
local row as integer
local column as integer
local firstvalue as float

; reading of the first automatic correction value of axis AX
firstvalue = X.Ax#correctors[1][1]
; number of axes set in the linearity corrector window
setval 3 column
lastelem X.AX#correctors row
; increase all corrections of a constant value
for i 1 row

for j 1 column
X.Ax#correctors[i][j] = X.Ax#correctors[i][j] + 0.025

next
next

fret

Albatros98

Numeric control

Message handling in different languages10.1.13

As said in the chapter describing the Composition of the System, Albatros supports the display of text
messages in various languages.

This support is provided by using TpaLangs, which is a program external to Albatros that manages the
message files. This program supports the translation of the messages in the different languages.

Text associated to Cycle Errors and Messages
Messages and Cycle errors are a special kind of text generated by the GPL code which are displayed by
Albatros.
These are normally defined by the person who develops the GPS when writing the code itself. To simplify the
programmer's work, the GPL editor allows to insert the text of a message directly from Albatros, without
having to use TpaLangs.
A second option for message handling in various languages is using the GPL DEFMSG instruction.

System Error Management10.1.14

Whenever a system error occurs (See Chapter System Errors->Introduction to System Errors) the
normal control behaviour is that of ending all tasks: the system error management allows to avoid ending the
tasks for which this function was enabled.
System errors generated by faults, stack underflow and stack overflow are directly managed by the relevant
control without recalling the function of system error management: the task is placed in HOLD status.

Error Management Function
Within the GPL code, one or more functions should be defined to examine the system error and consequently
to establish the most suitable actions to set the machine in safety conditions. The function to recall is passed
as a parameter to the GPL ONERRSYS instructions. (See Chapter GPL Language->Instructions->Flux
management->ONERRSYS).

Whenever a system error occurs, the task which generated this error is placed in HOLD status. In case the
autorun tasks generate system errors, they are relaunched only if the system error is not a FAULT.
If the system error is generated without task number, the current task is palced in HOLD status.

10.2 Special functions

Axis movement customization10.2.1

Albatros system graphical interface allows to perform manual axis movements and provides a graphical tool for
axis calibration.
Manual axis movement is performed by the manual movement control board, calibration may be performed by
the calibration control board. Both can be accessed by the Diagnostic window and synoptic views.
In both cases axis movement is controlled by a set of GPL functions whose execution is hidden to the user.
The system has a predefined set of these functions which are adequate in most cases. Anyway in some cases
may be necessary to customize the functions, for instance to define axes movement restrictions depending on
to machine status or to manage auxiliary devices as drive brakes.

Customisation is performed by creation of two GPL function for each axis: one for the manual movements and
one for the calibration. These functions are optional, if the system finds them uses them, otherwise standard
ones are used. Furthermore a partial customization of the movement functions is possible.

Manual axis movement

The customized manual movement functions must respect the following rules:

· The function must belong to the same subgroup of the referred axis.

· Function name must be MoveAx#axis_name, where axis_name will be changed to the axis name as
defined in Configuration. For instance X axis function name will be: MoveAx#X.

· The function must provide the following parameters:

1. Required action. May be an absolute position movement, an incremental movement, a stop etc.
Actions are identified by an integer number, the GPL compiler provides a predefined constant for each
action:

_MOVAXABS absolute position movement
_MOVAXINC incremental movement
_MOVAXSET position setting

GPL Language 99

Numeric control

_MOVAXFREE free status setting
_MOVAXNORMAL normal status setting
_MOVAXEND axis status reset after a movement (not used to stop the axis)

2. Result. Needed by the system to know whether the required action may be performed by the
customized function. If the required action is not supported, the corresponding standard function is
used. So this is a return value that the customized function has to set, therefore it is defined as a "by
reference" parameter (one element array).

3. Speed. Meaningful only when the required action is a movement, it is the required movement speed.
4. Position. Meaningful only for movement and position setting actions.

Custom axis movement function example:

Function MoveAx#X
param action as integer
param result[1] as integer
param speed as float
param position as double

setval 1,result[1]

select action
case _MOVAXEND

fcall EndMovement
case _MOVAXABS

fcall AbsMovement X, speed, position
case _MOVAXINC

fcall IncMovement X, speed, position
case _MOVAXSET

fcall PositionSet X, position
case _MOVAXFREE

fcall FreeAxis
case _MOVAXNORMAL

fcall NormalAxis
case else

call Unknown
endselect

fret

Unknown:
setval 0, result[1]
ret

The EndMovement, AbsMovement, etc. functions (the names are not compulsory) should implement the
customized management of the required actions. To ease the programmer's job standard movement functions
are provided as a guide to develop customized ones.

Calibration

The customized calibration functions must respect the following rules:
· The function must belong to the same subgroup of the referred axis.
· Function name must be CalibAx#axis_name, where axis_name will be changed to the axis name as

defined in Configuration. For instance X axis function name will be: CalibAx#X
· The function must provide the following parameters:

1. Required action. May be a point-to-point movement or an interpolated movement.
2. Result. Needed by the system to know whether the required action may be performed by the

customized function. If the required action is not supported, the corresponding standard function is
used.

3. Speed. Calibration movement speed
4. Positive position. Positive calibration movement position.
5. Negative position. Negative calibration movement position.
6. Wait time. Wait time between subsequent movements.

NOTE: please keep in mind that in some cases actions performed on the calibration control board cause the
execution of the axis movement function. For instance at the end of a calibration movement (when the stop
button is pressed) an axis status reset is performed calling the customized axis movement function with the
"required action" parameter set to _MOVAXEND. The same way when the axis position is modified in the
calibration control board the axis movement function is called with the "required action" parameter set to
_MOVAXSET.

Albatros100

Numeric control

Custom axis calibration function example:

Function CalibAx#X
param action as integer
param result[1] as integer
param speed as float
param PosPosition as double
param NegPosition as double
param WaitTime as float

setval 1,result[1]

select action
case _CALAXPP

fcall PPCalibration X, speed, PosPosition, NegPosition, _
WaitTime

case _CALAXINT
fcall IntCalibration X, speed, PosPosition, NegPosition, _

WaitTime
case else

call Unknown
endselect

fret

Unknown:
setval 0, result[1]
ret

The PPCalibration, IntCalibration etc. functions (the names are not compulsory) should implement the
customized management of the required actions. To ease the programmer's job calibration standard functions
are provided as a guide to develop customized ones.

Interaction with the window of Manual axis movement

Functions for interaction with the window of manual axis movement should comply with the following
specifications:

· The function should be in the same sub-group which belongs to the reference axis

· The function name should be MoveAx#axis_name#Action, where name_axis should be replaced with the
axis name defined in the configuration and Action can assume one of the following definitions:

OPEN indicates that the user has just opened the movement axis window
CLOSE indicates that the user is going to close the movement axis window
ACTIVE shows that the movement axis window is active
INACTIVE shows that the movement axis window is not active
JOG indicates that a shifting movement managed in runtime by the operator

is set
STEP indicates that a shifting movement with an predefined pitch is set
ABSOLUTE indicates that a shifting movement with a determined position is set.

For instance, if the axis handling window for X-axes has been opened, the function named MoveAx#X#Open
will be called.

Modifying the Window of Manual axis movement

It is possible to add up to 4 buttons to the axis movement window. Some GPL functions with fixed name
MoveAx#AxisName#BUTTONtext should be defined in the same sub-group where the concerned axis is
defined. NameAxis represents the concerned axis name and test represents the test, that will be displayed on
the button.The test can contain the character '&' to introduce a keyboard accelerator. If the test begins with a
number between 1 and 4, this number is considered as the position where the button will be inserted in the
axis movement window. The button test can be translated, if a DEFMSG with MOVEAX#BUTTONtest as
identificator is introduced into the group where the axis is. Pressing the customized button includes the
execution of the associated GPL function. Any exiting function delay or any check of function's run start are not
executed.

Standard calibration and movement functions10.2.2

Those shown below are standard functions used by manual movement and calibration control boards.
The functions change depending on axis type: encoder reading, stepper, etc.
The following functions may be customized.

GPL Language 101

Numeric control

Standard manual movement functions

Absolute position movement

; for stepper motor axes
Function AbsMovement

param axisname as axis
param speed as float
param position as double

ifstill axisname goto move
fret

move:
setvel axisname, speed
movabs axisname, position
waitstill axisname
fret

; for all other kind of axis
Function AbsMovement

param axisname as axis
param speed as float
param position as double

iftarget axisname goto move
ifstill axisname goto move
fret

move:
setvel axisname, speed
movabs axisname, position
waitstill axisname
fret

Incremental movement

; for stepper motor axes
Function IncMovement

param axisname as axis
param speed as float
param position as double

ifstill axisname goto move
fret

move:
setvel axisname, speed
movinc axisname, position
waitstill axisname
fret

; for all other kind of axis
Function IncMovement

param axisname as axis
param speed as float
param position as double

iftarget axisname goto move
ifstill axisname goto move
fret

move:
setvel axisname, speed
movinc axisname, position
waitstill axisname
fret

Position setting

; for encoder reading axes

Albatros102

Numeric control

Function PositionSet
param axisname as axis
param position as double

setquote axisname, position
fret

; for stepper motor axes
Function PositionSet

param axisname as axis
param position as double

ifstill axisname goto set
fret

set:
setquote axisname, position
fret

; for all other kinds of axis
Function PositionSet

param axisname as axis
param position as double

iftarget axisname goto set
ifstill axisname goto set
fret

set:
setquote axisname, position
fret

Free status setting

Function FreeAxis
param axisname as axis

free axisname
fret

Normal status setting

Function NormalAxis
param axisname as axis

normal axisname
fret

Calibration standard functions

Point-to-point movements calibration

; for stepper motor axes
Function PPCalibration

param axisname as axis
param speed as float
param PosPosition as double
param NegPosition as double
param WaitTime as float

setvel axisname, speed
loop:

movabs axisname, PosPosition
waitstill axisname
delay WaitTime
movabs axisname, NegPosition
waitstill axisname
delay WaitTime
goto loop
fret

GPL Language 103

Numeric control

; for all other kind of axis
Function PPCalibration

param axisname as axis
param speed as float
param PosPosition as double
param NegPosition as double
param WaitTime as float

setvel axisname, speed
loop:

movabs axisname, PosPosition
waitstill axisname
ifquotet axisname,<>,PosPosition goto exit
delay WaitTime
movabs axisname, NegPosition
waitstill axisname
ifquotet axisname,<>,NegPosition goto exit
delay WaitTime
goto loop

exit:
fret

Interpolated movements calibration

Function IntCalibration
param axisname as axis
param speed as float
param PosPosition as double
param NegPosition as double
param WaitTime as float

setveli axisname, speed
loop:

linearabs axisname, PosPosition
waitstill axisname
ifquotet axisname,<>,PosPosition goto exit
delay WaitTime
linearabs axisname, NegPosition
waitstill axisname
ifquotet axisname,<>,NegPosition goto exit
delay WaitTime
goto loop

exit:
fret

Function OnUIEnd#10.2.3

The function "OnUIEnd#" is performed, if available, by Albatros before ending all the tasks in a module. The
function must be defined in the file of intergroup functions. Maximum execution time of the "OnUIEnd#"
function is 2 seconds, then Albatros will terminate all the tasks.

The maximum downtime this function has to finish the execution can be configured in TPA.ini., under [Albatros]

section, under Timeout.OnUIEnd=value, where value is in milliseconds and cannot be greater than 60000.

Function OnUIPlugged#10.2.4

The "OnUIPlugged#" function is executed, when you need to know, for instance, if Albatros, after switching on
the plant, is informed of the remote module.
This function must be defined within the intergroup.

Albatros104

Numeric control

Function OnUIUnplugged#10.2.5

Function "OnUIUnplugged#" is executed before ending the execution of Albatros (and so before Albatros
disconnects from a module). This function must be defined within the intergroup. Albatros executes this
function within max. 2 seconds. What follows is read during this time:

· Cycle errors
· System errors
· Messages.

At the end of the execution, Albatros closes.

The maximum downtime this function has to finish the execution can be configured in TPA.ini., under [Albatros]

section, under Timeout.OnUIUnplugged=value, where value is in milliseconds and cannot be greater than

60000.

10.3 Instructions

Conventions10.3.1

The following pages have been organized as files and contain, for each instruction:

· the syntax
· a description of the arguments: type of data and admitted values
· a description of its functioning
· eventual notes
· eventual examples

All the instructions of the same type have been grouped together, to simplify learning and consultation.

Types of instructions in the GPL language10.3.2

The language is composed of instructions that can be grouped as follows:

Instructions to manage Input/Output

GETFEED reads the override feed rate
INPANALOG reads an analog input
INPFLAGPORT reads a flag port
INPPORT reads a digital port
MULTIINPPORT reads up to 4 output ports
MULTIOUTPORT sets up to 4 output ports
MULTISETFLAG sets several flags on 1
MULTISETOUT sets several outputs on 1
MULTIRESETFLAG sets several flags on 0
MULTIRESETOUT set several outputs on 0
MULTIWAITFLAG waits for the status of a flag bit or flag switch
MULTIWAITINPUT waits for the status of various inputs
OUTANALOG modifies an analog output
OUTFLAGPORT modifies a flag port
OUTPORT modifies a digital port
RESETFLAG sets a flag on 0
RESETOUT sets an output on 0
SETFLAG sets a flag on 1
SETOUT sets an output on 1
WAITFLAG waits for the status of a flag bit or flag switch
WAITINPUT waits for the status of an input
WAITPERSISTINPUT waits for a persistent status of an input

Instructions to manage the Axes

CHAIN chains an axis to another
CIRCABS absolute circular interpolation
CIRCINC incremental circular interpolation
CIRCLE makes a circle

GPL Language 105

Numeric control

COORDIN coordinated axis movement
DISABLECORRECTION disables the linear correction for the specified axis
EMERGENCYSTOP forces an emergency stop of the axes
ENABLECORRECTION enables the linear correction for the specified axis
ENDMOV end of axis movement
FASTREAD fast axis position read
FREE sets the axis in free
HELICABS absolute helicoidal interpolation
HELICINC incremental helicoidal interpolation
JERKCONTROL enables or disables interpolation movement control
JERKSMOOTH links with acceleration and speed continuity, the speed profiles of the axis

while contouring
LINEARABS absolute linear interpolation
LINEARINC incremental linear interpolation
MOVABS absolute movement of axes
MOVINC incremental movement of axes
MULTIABS absolute multi-axis linear interpolation
MULTIINC incremental multi-axis linear interpolation
NORMAL disables axis free
RESRIFLOC resets initial reference
SETINDEXINTERP associates a variable for the counting of executed interpolation
SETLABELINTERP associates a variable for the identification of a displacement block
SETPFLY fly homing
SETPFLYCHAINSTRAT enables control of slave axes behaviour for a master setpfly instruction
SETPZERO homing on zero
SETPZEROCHAINSTRAT enables control of slave axes behaviour for a master setpfly instruction
SETQUOTE sets the position
SETQUOTECHAINSTRAT enables control of slave axis behaviour for a setquote instruction on the

master
SETRIFLOC set spacial reference points
SETTOLERANCE sets the tolerance values for the linear interpolation
START restarts axis movement
STARTINTERP forces start of an interpolation
STOP interrupts axis movement
SWITCHENC allows replacing the encoder of an axis with that of another axis
WAITACC waits for axis acceleration
WAITCOLL waits for the axis to exceed a position from which it should start checking

the presence of a collision
WAITDEC waits for axis deceleration
WAITREG waits for the axis to be in steady status conditions
WAITSTILL waits for the final position to equal the target position
WAITTARGET waits for the axis to reach the target
WAITWIN waits for the axis to be in the window

Instructions to manage the Axis Parameters
Writing/Reading
DEVICEID writes the logical address associated to a device
GETAXIS reads one or more data of an axis

Point-to-point movement
SETACC sets acceleration
SETDEC sets the deceleration
SETDERIV sets the coefficient of derived action
SETFEED sets the point-to-point feed rate
SETFEEDF sets the feed forward
SETFEEDFA sets the acceleration feed forward
SETINTEG sets the coefficient of integral action
SETMULTIFEED sets the percentage value of feed rate override of the affected axes
SETPROP sets the coefficient of proportional action
SETSLOPE sets the type of ramp of the rapid movements
SETVEL sets the speed

Interpolated movement

LOOKAHEAD sets the interpolation lookahead
SETACCI sets the acceleration for interpolation

Albatros106

Numeric control

SETACCLIMIT enables and disables the automatic calculation of the interpolation steady
status speed

SETACCSTRATEGY selects the type of acceleration
SETAXPARTYPE changes the axis parameter set currently in use
SETCONTORNATURE sets the contouring angle
SETDECI sets the deceleration for the interpolation
SETDERIVI sets the coefficient of interpolation derived action
SETFEEDFAI sets acceleration feed forward in interpolation
SETFEEDI sets feed forward in interpolation
SETFEEDFI sets the feed forward in interpolation
SETINTEGI sets coefficient of interpolation integral action
SETPROPI sets coefficient of interpolation proportional action
SETSLOPE sets the type of ramp in the movements in the interpolation
SETSLOWPARAM changes the parameters to calculate the slowdown speed in the event that

the slowdown functionality while contouring is active
SETVELI sets the interpolation speed
SETVELILIMIT sets the individual components of the specified axis speed

Coordinated movement

SETFEEDCOORD sets the percentage value of the highest instantaneous variation of the axis
feed rate.

SETOFFSET enables a position offset

Chained movement
RATIO sets the chaining ratio of a slave axis with respect to its own master
SETDYNRATIO changes dynamically the chaining ratio during the movement of the master

axis.

Generic parameters
DYNLIMIT enables or disables dynamically the test on axis limit exceeding
ENABLESTARTCONTROL enables and sets the timeout to control the non-start up or the sudden stop

of the axis
NOTCHFILTER sets the notch filter cut-off frequency for the specified axis
RESLIMNEG disables the negative limit of the axis
RESLIMPOS disables the positive limit of the axis
SETADJUST enables axis adjust
SETBACKLASH decreases or deletes the effects of the mechanical blacklash on the axis

trajectory
SETBIGWINFACTOR modifies the multiplication factor for the calculation of the big window on the

requested axis.
SETDEADBAND sets the minimum voltage for the affected axis
SETENCLIMIT changes the incorrect encoder connection limit
SETINDEXEN enables or disables on the axis the reset of the position that corresponds to

the zero position reference
SETINTEGTIME it sets the number of loop error samples used to calculate the integral

component
SETIRMPP sets the speed of start ramp
SETLIMNEG sets the negative limit of the axis
SETLIMPOS disables the positive limit of the axis
SETMAXER sets the highest tolerated tracking value
SETMAXERNEG sets highest tolerated tracking value (negative direction)
SETMAXERPOS sets highest tolerated tracking value (positive direction)
SETMAXERTYPE sets the type of the test on the servoerror
SETPHASESINV activates or deactivates the phase inversion on axis
SETREFINV enables or disables on the indicated axis the the inversion of the speed

reference
SETRESOLUTION changes the resolution if an axis

Instructions to manage the Counters

DECOUNTER decrements a counter
INCOUNTER increments a counter
SETCOUNTER sets a counter

GPL Language 107

Numeric control

Instructions to manage the Timers

HOLDTIMER locks a timer
SETTIMER sets a timer
STARTTIMER starts the timer

Instructions to manage the Matrices

CLEAR sets variable, vector and matrix to zero
FIND searches for an element
FINDB searches for an element in a vector or in a matrix increasingly ranged
LASTELEM last element of a vector or of a matrix
LOCAL declaration of a local variable, vector, local matrix
MOVEMAT copies the row of a matrix in another
PARAM declaration of a function parameter
SETVAL changes a variable
SORT sorts vector or matrix

Instructions to manage the Strings

ADDSTRING chains two strings
CONTROLCHAR sets a control character in a string variable
LEFT extracts the first characters
LEN reads the length of a string
MID extracts some characters
RIGHT extracts the last characters
SEARCH searches for a string
SETSTRING modifies a string variable
STR converts from number to a string
VAL converts from string to number

Instructions to manage the Communications

CLEARRECEIVE empties the list of RECEIVE to satisfy
COMCLEARRXBUFFER empties inbox buffer of a serial port
COMCLOSE closes a serial port
COMGETERROR reads the error code
COMGETRXCOUNT reads the number of bytes in the inbox buffer
COMOPEN opens a serial port
COMREAD reads from the serial port
COMREADSTRING reads a string from the serial port
COMWRITE writs on the serial port
COMWRITESTRING writes a string on the serial port
RECEIVE external data reception
SEND sends data from outside
SENDIPC sends an IPC information
WAITIPC waits for an IPC information
WAITRECEIVE external data reception with standby

Mathematical instructions

ABS absolute value
ADD sum
AND AND binary
ARCCOS arc cosine
ARCSIN arc cosine
ARCTAN arc tangent
COS cosine
DIV division
EXP exponential
EXPR resolves mathematical expressions
LOG natural logarithm
LOGDEC base 10 logarithm
MOD module
MUL multiplication
NOT binary NOT

Albatros108

Numeric control

OR binary OR
RANDOM generates a random number
RESETBIT sets a bit on 0
ROUND rounds
SETBIT sets a bit on 0
SHIFTL rotates the bits to left
SHIFTR rotates the bits to right
SIN sine
SQR square root
SUB subtraction
TAN tangent
TRUNC truncation
XOR binary XOR

Instructions for Multitask management

ENDMAIL reports the end of the execution of a task
ENDREALTIMETASK terminates a real-time task
ENDTASK terminates a task
GETPRIORITYLEVEL reads the priority level of the current task
GETREALTIME returns time lapsed since the beginning of axis real-time
GETREALTIMECOUNT returns the number of real-time lapsed
HOLDTASK interrupts the execution of a task
RESUMETASK resumes the execution of a task
SENDMAIL sends a command to the 'mail' mailbox
SETPRIORITYLEVEL sets the priority level of the current task
STARTREALTIMETASK starts a real-time task
STARTTASK starts the execution of a task
STOPTASK interrupts the execution of a task and stops the movement of the associated

axes
WAITIPC waits for an IPC information
WAITMAIL receives a command from the 'mail' mailbox
WAITTASK waits for a task to terminate

Instructions for Flux management

CALL calls a subprogram
DELONFLAG disables the emergency management on flag bit or flag switch
DELONINPUT disables the emergency management on digital input
ENDREP end of the block repetition with REPEAT
FCALL calls a function
FOR extension of REPEAT
FRET return from call to function
GOTO jumps to a label
IF test on a variable
IFACC tests, if the axis is accelerating
IFAND test on AND operation
IFBIT test on bits
IFBLACKBOX tests if the record of the logical device activity is active.
IFCHANGEVEL tests, if the axis is changing speed
IFCOUNTER test on a counter
IFDEC tests if the axis is decelerating
IFDIR test on axis direction
IFERRAN test on loop error
IFERROR test on active cycle error
IFFLAG test on a flag
IFINPUT test on an input
IFMESSAGE test on the active message
IFOR test on OR operation
IFOUTPUT test on an output
IFQUOTER test on real position
IFQUOTET test on real position
IFRECEIVED test on data reception
IFREG tests if the axis is in steady status conditions
IFSAME verifies that both arguments refer to the same data
IFSTILL tests if the axis is still
IFSTR test on a string
IFTARGET tests if the axis has reached the target
IFTASKHOLD tests if the parallel function is interrupted

GPL Language 109

Numeric control

IFTASKRUN tests if the parallel function is running
IFTIMER test on a timer
IFVALUE test on a variable
IFVEL test on axis speed
IFWIN tests if the axis is in the window
IFXOR test on XOR operation
NEXT end of block repetition with FOR
ONERRSYS sets the call to a function on a system error
ONFLAG emergency in flag bit or flag switch
ONINPUT emergency in digital input
REPEAT repetition of an instruction block
RET return from subprogram
SELECT multiple selection with jump
TESTIPC verifies the presence of an IPC information
TESTMAIL test and reception of a command

Various instructions

CLEARERRORS deletes all the module cycle errors
CLEARMESSAGES deletes all messages of the module
DEFMSG defines a group message
DELAY locks the current function for a period of time
DELERROR deletes ma previous cycle error
DELMESSAGE deletes a previous message
ERROR sends a cycle error to the PC
IFDEF/ELSEDEF/ENDDEF test for the conditional compilation
MESSAGE sends a message to the PC
SYSFAULT disables SYSOK signal
SYSOK enables SYSOK signal
TYPEOF type of the argument
WATCHDOG enables, updates, disables the watchdog from GPL on the TMSWD hardware

module

Instructions to manage the MECHATROLINK-II

MECCOMMAND sends a command to the axis drive
MECGETPARAM reads a parameter of the indicated axis
MECSETPARAM writes a parameter in the indicated axis
MECGETSTATUS reads the values of STATUS, ALARM and IO_MON

Instruction to manage the standard field buses

AXCONTROL sets a value for ControlWord
AXSTATUS returns the value in the StatusWord
CNBYDEVICE returns the node and board number of a device
READDICTIONARY reads the content of a dictionary object
WRITEDICTIONARY writes the content of the dictionary object

Instructions to manage the EtherCAT

ACTIVATEMODE sets an operating mode
ECATGETREGISTER returns the content of an ESC register (EtherCAT Slave Controller)
ECATSETREGISTER writes the content of an ESC register (EtherCAT Slave Controller)
GETPDO returns an object inside a PDO Ethercat
SETEOE activates or deactivates the Sniffer
SETPDO sets an object inside a PDO Ethercat

Instructions to manage the CAN Bus

GETCNSTATE returns the status of the NMT protocol for a node of a CANOpenboard.
GETSDOERROR returns the last error occurred
GETMNSTATE returns the status of the NMT protocol for the master node of the CANoPen

board.
RECEIVEPDO reads the content of an asynchronous PDO
SENDPDO writes the content of an asynchronous PDO

Albatros110

Numeric control

SETMNSTATE sets the status of the NMT protocol for the node of the CANopen board.

Instructions for the Simulation

DISABLE disables one or more axes
DISABLEFORCEDINPUT disables the inputs to be forced
ENABLE enables one or more axes
ENABLEFORCEDINPUT enables the inputs to be forced
RESETFORCEDINPUT forces an input to OFF
SETFORCEDANALOG forces an analog input
SETFORCEDINPUT forces an input to ON
SETFORCEDPORT forces an input port

Instruction for the “Blackbox” functionalities

ENDBLACKBOX ends the record functionality
PAUSEBLACKBOX interrupts the record functionality
STARTBLACKBOX starts the record functionality

Instructions for ISO control

ISOG0 sets the rapid movement
ISOG1 sets the interpolated movement
ISOG9 sets the forced stop of the movement
ISOG90 sets the interpretation of the positions as absolute positions
ISOG91 sets the interpretation of the positions as relative positions
ISOG93 sets the interpretation as inverse of the time
ISOG94 sets the interpretation of the speed as unit of measure per minute
ISOG216 defines the matrices for machine parametrisation
ISOG217 describes the physical axes and the virtual axes, which make up the

machine
ISOM2 frees the axes free from ISO movement
ISOM6 selects the indices of parametrisation matrices
ISOSETPARAM sets some parameters ruling the fluidity of the ISO interpolated movement
KINEMATICEXPR sets the single expressions of inverse and direct kinematics

Input/Output10.3.3

GETFEED

Syntax
GETFEED variable

Arguments
variable feed rate

Description
It copies the value of the feed rate read from the remote I/O board, in the specified variable. Feedrate
value is included between 0 and 100 and it is a percentage value.
It operates on an analog input which is not visible in configuration.
For all TPA boards controlling the feed rate a dedicated connector is available.

INPANALOG

Syntax
INPANALOG inpanalogname, variable

Arguments
inpanalogname name of analog input device
variable variable

Description
It copies the value of the analog input specified by inpanalogname in the specified variable.

GPL Language 111

Numeric control

INPFLAGPORT

Syntax
INPFLAGPORT flagportname, variable

Arguments
flagportname name of flag port device
variable variable

Description
It copies the status of the flag port specified by flagportname in the specified variable.
The flag port is detected as a bit mask. A bit is associated to each flag of the port. If a flag is “ON”, the
corresponding bit is set on 1.

INPPORT

Syntax
INPPORT portname, variable

Arguments
portname name of input port device
variable integer or char variable

Description
It copies the status of the portname input port in the specified variable.
The input port is detected as a bit mask. If the input of the port is “ON” the corresponding bit is set on 1.

MULTIINPPORT

Syntax
MULTIINPPORT port1[,…,port4],variable

Arguments
port1 provides the bits from 0 to 7
port2 provides the bits from 8 to 15
port3 provides the bits from 16 to 23
port4 provides the bits from 24 to 31
variable integer variable receiving the input ports

Description
It reads no more than 4 output ports at the same time and writes them into a variable. Ports are read
atomically. This procedure guarantees that the ports are read within the same real-time. Port1 corresponds
to the lower byte, port4 corresponds to the greater byte.

MULTIOUTPORT

Syntax
MULTIOUTPORT value, portname1[,…,portname4]

Arguments
value number or integer value to be written in the output ports
portname1 receives the bits from 0 to 7
portname2 receives the bits from 8 to 15
portname3 receives the bits from 16 to 23
portname4 receives the bits from 24 to 31

Description
It writes the value into four output ports at the same time. Ports are read atomically. This procedure
guarantees that the ports are written within the same real-time. If portname2, portname3, portname4
are not specified, the value of the byte is 0.

Albatros112

Numeric control

MULTIRESETFLAG

Syntax
MULTIRESETFLAG mask, flagname1[,…, flagname32]

Arguments
mask mask of involved flags - constant or variable
flagname1 name of flag device

Description
It disables, that is, it switches to “OFF”, all the flagnames (1÷32), whose bit is set on 1 in the argument
mask.
The mask 0 bit (lowest weight) corresponds to flagname1.

MULTIRESETOUT

Syntax
MULTIRESETOUT mask, outputname1[,…, outputname32]

Arguments
mask mask of involved outputs - constant or variable
outputname1 name of output device

Description
It disables all the outputnames (1÷32), whose bit in the argument mask is set on 1. The mask 0 bit
(lowest weight) corresponds to outputname1.

MULTISETFLAG

Syntax
MULTISETFLAG mask, flagname1[,…, flagname32]

Arguments
mask mask of involved flags - constant or variable
flagname1 name of flag device

Description
It enables, that is, it switches to “ON”, all the flagnames (1÷32), whose bit in the argument mask is set
on 1. The mask 0 bit (lowest weight) corresponds to flagname1.

MULTISETOUT

Syntax
MULTISETOUT mask, outputname1[,..., outputname32]

Arguments
mask mask of involved outputs - constant or variable
outputname1 name of output device

Description
It enables all the outputname outputs (1÷32), whose bit in the argument mask is set on 1.
The 0 bit of mask (lowest weight) corresponds to outputname1. If the output is a monostable output it is
disabled automatically after 200 milliseconds.

MULTIWAITFLAG

Syntax
MULTIWAITFLAG mask, flag1[,..., flag32], status [, timeout [, GOTO label]]
MULTIWAITFLAG mask, flag1[,..., flag32], status [, timeout [, CALL

subprogramname]]
MULTIWAITFLAG mask, flag1[,..., flag32], status [, timeout [, functionname]]

GPL Language 113

Numeric control

Arguments
mask constant or variable. Mask of involved flags
flag1[,...flag32] name of flag device
status predefined constant. Acceptable values are:

- ON flag status: enabled
- OFF flag status: disabled

timeout constant or variable. Maximum wait time.
label jump to label (GOTO)
subprogramname subprogram label (CALL)
functionname name of function

Description
It waits for the specified flags, from flag1...flag32 to be in the status indicated by the status parameter
(ON/OFF).
It checks all the flags whose bit in the argument mask is enabled (ON). The 0 bit of the argument mask
(lowest weight) corresponds to the bit defined by flag1, the 1 bit corresponds to the bit defined by flag2
and so on, up to the bit defined by flag32.
The timeout parameter allows to set a different timeout from default timeout which waits one second.
When label, subprogramname or functionname are present, at the end of timeout the program jumps
to label or calls subprogramname or functionname.

MULTIWAITINPUT

Syntax
MULTIWAITINPUT mask, input1[,..., input32], status [, timeout [, GOTO label]]
MULTIWAITINPUT mask, input1[,..., input32], status [, timeout [, CALL

subprogramname]]
MULTIWAITINPUT mask, input1[,..., input32], status [, timeout [, functionname]]

Arguments
mask constant or variable. Mask of involved inputs
flag1[,...flag32] name of input
status predefined constant. Acceptable values are:

- ON flag status: enabled
- OFF flag status: disabled

timeout constant or variable. Maximum wait time
label jump to label (GOTO)
subprogramname subprogram label (CALL)
functionname name of function

Description
It waits for the specified inputs, from input1…input 32 to be in the status indicated by the status
parameter (ON/OFF).
It verifies all the inputs whose bit in the argument mask is enabled (ON). The 0 bit of the argument mask
(lowest weight) corresponds to the bit defined by input1, the 1 bit corresponds to the bit defined by
input2 and so on, up to the bit defined by flag32.
If no optional arguments are specified, a second after the beginning of instruction execution (default time),
the following parametrised message appears: “Wait inputn ON/OFF”. The name of the indicated input
corresponds to the first enabled input which still has not satisfied the status. If the timeout parameter is
included, the above mentioned message will appear when the set timeout expires. If the requested
condition takes place, when timeout has expired, a parametrised message will appear automatically to
delete the previous one.
When label, subprogramname or functionname are present, at the end of timeout the program jumps
to label or calls subprogramname or functionname.

OUTANALOG

Syntax
OUTANALOG outanalogname, value

Arguments
outanalogname name of analog output device or axis
value constant or variable

Description
It sets the analog output or the axis indicated by outanalogname to the voltage specified by value.

Albatros114

Numeric control

OUTFLAGPORT

Syntax
OUTFLAGPORT flagportname, value

Arguments
flagportname name of the flag port device
value constant or variable

Description
It copies the value in the flag port specified by flagportname.
The value parameter is detected as a bit mask. Each bit is associated to a port flag. If the bit is set on 1
the flag is “ON”.

OUTPORT

Syntax
OUTPORT portname, value

Arguments
portname name of output port device
value constant or variable, integer or char

Description
It copies the value in the portname output port.
The ouptput port is detected as a bit mask. It the bit is set on 1 the corresponding output is on “ON”.

RESETFLAG

Syntax
RESETFLAG flagname

Arguments
flagname name of flag device

Description
It disables (switches to OFF) the flagname flag.

RESETOUT

Syntax
RESETOUT nameoutput

Arguments
nameoutput name of digital output device

Description
It disables (switches to OFF) the nameoutput output.

SETFLAG

Syntax
SETFLAG flagname

Arguments
flagname name of flag device

Description
It enables (switches to ON) the flagname flag.

SETOUT

Syntax
SETOUT nameoutput

Arguments

GPL Language 115

Numeric control

nameoutput name of digital output device

Description
It enables (switches to ON) the nameoutput output.
If the output is configured as monostable it is automatically disabled after a 200 millisecond timeout.

WAITFLAG

Syntax
WAITFLAG flagname, status [, timeout [, GOTO label]]
WAITFLAG flagname, status [, timeout [, CALL subprogramname]]
WAITFLAG flagname, status [, timeout [, functionname]]

Arguments
flagname name of flag device
status predefined constant. Acceptable values are:

- ON flag status: enabled
- OFF flag status: disabled

timeout constant or variable. Maximum wait time
label jump label (GOTO)
subprogramname subprogram label (CALL)
functionname name of function

Description
It waits for the flag flagname to be in the status indicated by the parameter status (ON/OFF).
If the only optional argument present is timeout, the cycle error “flagname flag awaiting status” is
generated at end of timeout.
If the condition is satisfied after timeout expiry, the cycle error previously sent out for that task is
automatically cancelled.
When label, subprogramname or functionname are present, at the end of timeout the program jumps
to label or calls subprogramname or functionname without generating any automatic display.

Note
To avoid waiting for flags during work cycles, we suggest setting a timeout.

WAITINPUT

Syntax
WAITINPUT nameinput, status [, timeout [, GOTO label]]
WAITINPUT nameinput, status [, timeout [, CALL subprogramname]]
WAITINPUT nameinput, status [, timeout [, functionname]]

Arguments
nameinput name of input
status default constant. Acceptable values are:

- ON input status: enabled
- OFF input status: disabled

timeout constant or variable. Maximum waiting time
label jump label (GOTO)
subprogramme subprogram label (CALL)
functionname name of function

Description
It waits for the nameinput input to be in the status indicated by the parameter status (ON/OFF).
If no optional arguments are specified, the cycle error "Nameinput digital input waiting status" is
generated automatically 20 seconds after the beginning of instruction execution. If the only optional
argument present is timeout, the above mentioned message is generated at the end of timeout.
If the condition is satisfied after timeout expiry, the cycle error previously sent out for that task is
automatically cancelled.
If label, subprogramname or functionname are present, when timeout expires the program jumps to
label or calls subprogramname or functionname without generating any automatic display.

Note
To avoid having to wait for input signals during a work cycles, we suggest setting a shorter timeout than
default time (20 seconds).

Example
Routine of Axis Homing

Albatros116

Numeric control

WAITPERSISTINPUT

Syntax
WAITPERSISTINPUT nameinput, status, timepersist [, timeout [, GOTO label]]
WAITPERSISTINPUT nameinput, status, timepersist [, timeout [, CALL

subprogramname]]
WAITPERSISTINPUT nameinput, status, timepersist [, timeout [, functionname]]

Arguments
nameinput name of digital input device
status default constant. Acceptable values are:

- ON input status: enabled
- OFF input status: disabled

timepersist constant or variable
timeout constant or variable. Maximum waiting time
label jump label (GOTO)
subprogramme subprogram label (CALL)
functionname name of function

Description
It waits for the nameinput input to reach the status indicated by the parameter status (ON/OFF) and to
remain in that status for the time specified in timepersist (unit of measure: seconds).
If no optional arguments are specified, the cycle error "Nameinput digital input waiting status" is
generated automatically 20 seconds after the beginning of instruction execution.
If the only optional argument present is timeout, the above mentioned message is generated at the end of
timeout.
If the condition is satisfied after timeout expiry, the cycle error previously sent out for that task is
automatically cancelled.
When label, subprogramname or functionname are present, at the end of timeout the program jumps
to label or calls subprogramname or functionname without generating any automatic display.

Note
To avoid having to wait for input signals during work cycles, we suggest setting a shorter timeout than
default time (20 seconds).

Axes10.3.4

CHAIN

Syntax
CHAIN master_axis, slave_axis1 [,...slave_axis5]

Arguments
master_axis name of axis device functioning as master
slave_axis1...slave_axis5 name of axis device functioning as slave

Description
After executing this instruction, the slave_axes (1÷5) will execute movements linked to those of the
master axis by the chaining ratio set with the RATIO instruction. Both point-to-point and interpolated
movements will be chained.
Slave_axis1 is not an optional parameter, it must always be defined.
If a slave axis is to be chained, it can not be engaged in an interpolation and can not be master of other
slaves.
On its part, the master axis cannot be the slave of other axes.
Chaining can be carried out both with positioned axes and moving axes.
To disable axes chaining it is sufficient to execute the instruction NORMAL on the master axis. This last
operation can be carried out both with axes in position and with axes in motion. When the chain is disabled
while the axes are in motion, the slave gradually decelerates and stops.
A maximum of 8 master axes can be simultaneously defined.
The instruction can be performed also with stepper axes, as long as they can be controlled through
TRS_AX.
In addition, all the axes must have a real and not simulated encoder, otherwise the system error no. "4101
– Inconsistent management of axis AxisName" is generated.
See also RATIO.

Example

; Y axis is chained to X axis
CHAIN X, Y
; X axis moves.

GPL Language 117

Numeric control

; Y replicates the movement of X
MOVINC X, 100

CIRCABS

Syntax
CIRCABS [label],axis1, position1, axis2, position2, direction, ±radius [, angle]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1, axis2 name of acis devices
position1, position2 constant or variable. It indicates the absolute move position
direction integer variable. It specifies the kind of rotation. Acceptable values are:

CW clockwise
CCW counterclockwise

radius constant or variable. It indicates the value of the radius of the circle
angle constant or variable. It indicates the abgle of the starting point

Description
2 axes circular interpolation with absolute transfer based on programmed positions: position1, position2.
The arch is determined by the starting point (current point), the final point, the value of the radius and the
direction.
The sign applied to the radius allows to select the minor arch (+radius) or the major arch (-radius).
In the rare case in which the starting position of axis1 coincides with position1 final position and the
starting position of axis2 coincides with the position2 final position a complete circle is drawn. In this case
it is necessary ti indicate the argument angle, having the same meaning as the instruction CIRCLE (to be
referred to).
The angle parameter is necessary to determine precisely the centre of the circle, with the same meaning as
the instruction CIRCLE. It is only used when, before instruction execution, position1 and position2
coincide with the current position of the axes.
The optional parameter label is used in association with the instruction SETLABELINTERP to indentify
univocally the displacement block.
Stepper axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In this case it
must be taken into account that by the word interpolation we intend a coordinated movement of more axes
affected by discrete error due to axis piloting method.

CIRCINC

Syntax
CIRCINC [label],axis1, position1, axis2, position2, direction, ±radius [, angle]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1, axis2 name of axis devices
position1, position2 constant or variable. It indicates the incremental move position
direction integer variable. It specifies the kind of rotation. Acceptable values are:

CW clockwise
CCW counterclockwise

radius constant or variable. It indicates the value of the radius of the circle
angle constant or variable. It indicates the angle of the starting point

Description
2 axes circular interpolation with incremental transfer based on programmed positions position1 and
position2.

Albatros118

Numeric control

The arch is determined by the starting point (current point), the final point, the value of the radius and the
direction.
The sign applied to the radius allows to select the minor arch (+radius) or the major arch (-radius).
In the rare case in which position1 = position2 = 0, a complete circle is drawn. In this case it is necessary
to indicate the argument angle, with the same meaning as the instruction CIRCLE (to be referred to).
The angle parameter is necessary to determine precisely the centre of the circle, with the same meaning as
the instruction CIRCLE. The optional parameter label is used in association with the instruction
SETLABELINTERP to identify univocally the displacement block.
Stepper axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In this case it
must be taken into account that by the word interpolation we mean a coordinated movement of more axes
affected by discrete error due to axis piloting method.

CIRCLE

Syntax
CIRCLE [label],axis1, axis2, direction, radius, angle

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1, axis2 name of axis devices
direction integer variable. It specifies the kind of rotation. Acceptable values are:

CW clockwise
CCW counterclockwise

radius constant or variable. It indicates the value of the radius of the circle
angle constant or variable. It indicates the angle of the starting point

Description
Complete circular interpolation.
It generates a circle with axis1 and axis2, in the indicated direction, with the indicated radius and
according to the set starting angle.
The radius can only have positive values.
The angle must be given according to the trigonometric convention, positive, clockwise, starting from the X
axis. The position of the centre C0 of the circle is determined by specifying the angle formed by the radius
passing from the programmed initial point P (current point) and the horizontal direction X+. The optional
parameter label is used in association with the instruction SETLABELINTERP to indentify univocally the
displacement bloc.
Stepper axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In this case it
must be taken into account that the word interpolation refers to a coordinated movement of more axes
affected by discrete error due to axis piloting method.

GPL Language 119

Numeric control

COORDIN

Syntax
COORDIN matrix, value deltaT, direction, begin, end, mask, axis1, n°

_column_axis1 [, (axis2, n°_column_axis2) ÷ (axis32, n°
_column_axis32)]

Arguments
matrix data matrix
value deltaT constant or variable.Time basis
direction predefined constant. Direction of data reading in matrix

UP from the last row, upwards
DOWN from the first row, downwards

begin global integer variable. The number of the first row
end global integer variable. The number of the last row
mask axis mask to be enabled
axis1 [...axis32] name of axis devices
n°_column_axis1 number of matrix column referring to axis
[...n°_column_axis32]

Description
This instruction allows to carry out synchronised movements of axes axis1, axis2, etc. by means of
incremental transfers (microvectors) defined by a data matrix.
The parameters axis1 and n_column_axis1 must always be defined.
The values contained in the matrix indicate the absolute positions reached by the various axes one at a
time.
Relative incremental transfers (interval between the position of row (n) and row (n-1)) are executed in a
lapse of time equivalent to a multiple of the time basis (1 ms = real-time of axes refresh) specified by the

argument value Dt, which must consequently be expressed by an integer number.

When the value of this time has been defined, the distance covered at each movement by each axis
determines its speed. This instruction allows to coordinate the movement of a maximum of 32 axes, along
any curved line in space, as generated by SPLINE techniques.
It is not necessary to wait until the instruction is completed; it does not need the STARTINTERP instruction
to start. However, a WAITSTILL instruction should be brought to its end, in order to wait for the correct
arrival phase of the axes. Possible changes of the feedrate override should be made by means of the
SETFEEDI instruction and worked through the SETFEEDCOORD instruction.
The parameter direction allows to determine the direction of the matrix, allowing you to execute the
trajectory in both directions.
The columns of the matrix to be scanned can be float or double but not both at the same time.

Albatros120

Numeric control

In addition to the movement of axes along a finite path (defined by the number of matrix rows), infinite
movement can be selected using:
· one matrix of a single row. With this operating mode, the control always reads the only row of the matrix

and applies the coordinates in the row to the axes. To move the axes, the matrix row should be changed,
preferably using a real-time task which guarantees coordinates updating is synchronised with the axes
refresh frequency. With this operating mode, the control always reads the only row of the matrix and
applies the coordinates in the row to the axes. To move the axes, the matrix row should be changed,
preferably using a real-time task which guarantees coordinates updating is synchronised with the axes
refresh frequency;

· a matrix of more rows. It is possible to scan the matrix with cycles from the first to the last row
indefinitely by setting the values ini = 1, fin = 0 and direction = UP. If a single multi-row matrix row
must be executed, it is necessary to set parameters ini, fin and direction in the following way: ini =
number of rows that must be executed, fin = number of row preceding row that must be executed,
direction = UP. Otherwise a system error is generated.

Stepper axes can only be used in this instruction, if they are controlled by a TRS-AX remote.

DISABLECORRECTION

Syntax
DISABLECORRECTION axis [, axis1,..., axis6]

Arguments
axis name of axis device
axis1,…, axis6 name of axis device

Description
Disables the linear correction for the specified axis.
The first parameter is the axis whose correction is to be deactivated, if it is the only parameter specified all
the corrections present in the configuration are deactivated. The following parameters allow the
specification of which corrections are to be deactivated, if one of these coincides with the first parameter
the auto-correction is deactivated.
For a more detailed description see ENABLECORRECTION.

Example
; disables only the auto-correction for axis X
DISABLECORRECTION X, X

; disables the crossed correction (towards X and Y) for axis Z,
; but not the auto-correction
DISABLECORRECTION Z, X, Y

EMERGENCYSTOP

Syntax
EMERGENCYSTOP axis, time

Arguments
axis name of axis devices
time constant or integer variable. Ramp time (ms)

Description
It stops the specified axis and any axes possibly involved with it in the interpolated movement. The
movement is stopped by a deceleration ramp over the time indicated by the variable [time].
In the point-to-point movements if the time set is greater than the configured deceleration time, this latter
is used.
In the interpolated movements, if the time set is greater than the maximum value of the deceleration times
of all axes involved, the maximum time configured is used.
The movement can be resumed by a START instruction.
The instruction cannot be used if [axis] is a slave axis.
The instruction can generate following system errors:
· "4101 – Inconsistent management of axis" when [axis] is executing a synchronized movement or a

multilinear interpolation or an ISO movement.
· "4105 – Instruction not executable on axis" when [axis] is a counting axis.
· "4399 – Parameter out of range" if the [time] indicated is equal or less than 0.

GPL Language 121

Numeric control

ENABLECORRECTION

Syntax
ENABLECORRECTION axis [, axis1,..., axis6]

Arguments
axis name of axis device
axis1,..., axis6 name of axis device

Description
Enables the linear correction for the specified axis. The correction consists of the auto-correction and the
crossed correction. The auto-correction is a correction of the real position of an axis in relation to its own
position, a crossed correction is a correction of the real position of an axis in relation to the position of
other axes. Up to five crossed correctors can be defined.
The first parameter is the axis whose correction is to be deactivated, if it is the only parameter specified all
the corrections present in the configuration are activated.
The following parameters allow the specification of which corrections are to be activated, if one of these
coincides with the first parameter the auto-correction is activated.
See also DISABLECORRECTION.

NOTE: For the instruction to have effect the correction must also be enabled in the configuration.

Example
; enables all the corrections contained in the configuration for axis X
ENABLECORRECTION X

; enables only the auto-correction for axis X
ENABLECORRECTION X, X

; enables the auto-correction and
; the crossed correction (towards X and Y) for axis Z
ENABLECORRECTION Z, X, Y, Z

ENDMOV

Syntax
ENDMOV axis [, position]

Arguments
axis name of axis device
position constant or variable.

Description
It stops movement of the specified axis. The difference from the STOP instruction is that when movement is
interrupted it can not be restarted by using the START instruction. If the parameter position is specified,
you can set the position at which the axis will end its movement, otherwise the point at which the axis
stops will depend on current speed and the last programmed deceleration. Where necessary, to reach the
end-of-movement point, the controller reverses axis motion.

Note
The position parameter is used only if the movement concerns a point-to point movement. In case of
interpolated movement, the movement of the axis stops without considering the position value.

Example
; stops current movement, takes axis to position 0.0
ENDMOV X, 0.0

FASTREAD

Syntax
FASTREAD axis1, status, variable1 [,axis2, variable2],[..., axis8, variable8]

Arguments
axis1…[…axis8] name of axis devices. Axis1 is the master axis
status default constant. It can have the following values:

ON rising edge
OFF falling edge

variable1…[…variable8] variable or double matrix/vector element. Memorised position

Albatros122

Numeric control

Description
The positions of the indicated axes are read and saved in the variables the instant the rapid input of
axis1 (Master axis) switches to the set status.

If the indicated axes are analog, they must be part of the same board (4 for TRS-AX).
If the indicated axes are digital, the rapid input signal is located directly on the drive; therefore, in case of
multiple FASTREAD, the signal should be connected in parallel on various devices.
With an EtherCAT bus, for each axis swtiching encoder (please see the instruction SWITCHENC), the
maximum number of allowed axes decreases by one. Once the limit is exceeded, the system error "4400
Too many active axes in FASTREAD" will occur. Moreover, the additional encoder must be connected to a
TRS-AC-E expansion on Trs-CAT. Otherwise, the system error "4375 FASTREAD executed on axes from
different boards" will occur.
The instruction ends when the input switches to the indicated status (ON/OFF).
If a STOP instruction is executed before switching to rapid input, these instructions remain active and
restart after the START instruction.
More than one fast reading can be activated at the same time on the same axis board.

During the execution of the instruction it is not possible to execute the instructions SETPZERO and SETPFLY
at the same time on the same axis, if it is connected to boards with MECHATROLINK-II bus.

Note
The rapid input for digital axes on board with MECHATROLINK-II bus stands on EXTI2 input and does not
need to be configured in virtual-physical. The rapid inputs of digital MECHATROLINK-II axes need to be
“short circuited”, because the axis coordinate should stored only with reference to its own rapid axis.

FREE

Syntax
FREE axis [, voltage]

Arguments
axis name of axis device
voltage constant float or variable float. Reference voltage

Description
It sets the axis in ‘open loop’ (Free) condition, disabling the position control. If the axis is slave in a
sequence with other axis, the link is broken and the movement of the axes interrupted.
If the voltage parameter is specified, the axis reference voltage is set on the specified value.
This instruction can be used in the case of measuring axes, for position detection, or for axes whose
movement can be forced by external mechanical instruments which could alter their position.
During functioning the position of the axis is regularly detected and updated, allowing to position the axis
definitively after enabling position control (instruction NORMAL).

HELICABS

Syntax
HELICABS [label],axis1, position1, axis2, position2, axis3, position3, direction,

±radius [,angle [, numrev [, axis4, position4 [,..., axis6,
position6]]]]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1...axis3[...axis6] name of axis devices
position1...position3 constant or variable. Absolute move position
[...position6]
direction integer variable. Kind of rotation clockwise/counterclockwise (CW/CCW)
radius constant or variable. Radius of the helix
angle constant or variable. Angle of starting point
numrev constant or variable. Number of revolutions

Description
Helicoidal interpolation with absolute move equal to programmed positions position1, position2 and
position3. The movement consists in a circular interpolation associated to axes axis1 and axis2 (using
the same syntax rules as CIRCABS/CIRCINC, relative to the arguments direction, ±radius and angle),
and an associated linear of axis3 (and possibly axis4, axis5 and axis6). The helicoidal movement can be
developed in a series of revolutions, as indicated by the argument numrev. The position of the axis with
linear movement (as the possible positions of axis4, axis5 and axis6) refers to the total move (not to

GPL Language 123

Numeric control

move/revolution). The optional parameter label is used in association with the instruction SETLABELINTERP
to indentify univocally the displacement bloc.
Stepper axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In this case it
must be taken into account that the word interpolation refers to a coordinated movement of more axes
affected by discrete error due to axis piloting method.

Note
1. Contornature condition is evaluated only on the three first axes making up the reference system.

Adding and possibly modifying a further one, you obtain an incorrect management of the speed profile.
To obtain a correct movement, an instruction WAITSTILL between an instruction HELICABS and the
other should be interposed.

2. If a reference local system is set using the instruction SETRIFLOC the three axes definint the new
reference system should be always be indicated among the parameters of the instruction HELICABS,
even if they do not displace anything.

HELICINC

Syntax
HELICINC [label],axis1, position1, axis2, position2, axis3, position3, direction,

± radius [,angle [, numrev [, axis4, position4 [,..., axis6,
position6]]]]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1...axis3[...axis6] name of axis devices
position1...position3 constant or variable. Incremental move position
[...position6]
direction integer variable. Type of rotation clockwise/counterclockwise (CW/CCW)
radius constant or variable. Radius of the helix
angle constant or variable. Angle of starting point
numrev constant or variable. Number of revolutions

Description
Helicoidal interpolation with incremental move equal to programmed positions position1, position2 and
position3.
The movement consists in a circular interpolation involving axes axis1 and axis2 (using the same syntax
rules as CIRCABS/CIRCINC, relative to arguments direction, ±radius and angle), and a linear
interpolation involving axis3 (and possibly axis4, axis5 and axis6).
The helicoidal movement can be developed in a series of revolutions as indicated by the argument
numrev.
The position of the axis with linear movement (as the possible positions of axis4, axis5 and axis6) refers
to the total move (not to move/revolution). The optional parameter label is used in association with the
instruction SETLABELINTERP to identify univocally the displacement bloc.
Stepper axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In this case it
must be taken into account that the word interpolation refers to a coordinated movement of more axes
affected by discrete error due to axis piloting method.

Note
1. Contornature condition is evaluated only on the three first axes making up the reference system.

Adding and possibly modifying a further one, you obtain an incorrect management of the speed profile.
To obtain a correct movement, an instruction WAITSTILL between an instruction HELICINC and the
other should be interposed.

2. If a reference local system is set using the instruction SETRIFLOC the three axes that define the new
reference system should be always be indicated among the parameters of the instruction HELICINC,
even if they do not displace anything.

JERKCONTROL

Syntax
JERKCONTROL axis, status

Arguments
axis name of axis devices
status predefined constant. It can assume the following values:

ON rising edge
OFF falling edge

Description

Albatros124

Numeric control

According to whether the parameter status is set on ON or OFF, it enables or disables the jerk control on
axis interpolation and point-to-point movements.The jerk control is enabled only with axes that have
configured one acceleration ramp and Esse deceleration. If the axis has configured one Linear ramp the
jerk is not checked.

JERKSMOOTH

Syntax
JERKSMOOTH axis, value

Arguments
axis name of devices of axis type.
value constant or variable float.

Description
In any classic interpolated movements, the axes can move while contouring, that is without stopping
between a bloc and the next one. This occurs, if discontinuous function of tangency in the blocs is lower
than the value "Maximum contouring angle", set in the module configuration (default value is 15), or lower
than the value set through the instruction SETCONTORNATURE).
In the opposite case, the axes are stopped in the edge point with controlled deceleration and let start again
along the new bloc with controlled accelerations and speed rates. However, stop and restart reduce the
machine movement performances. When the contouring angle takes on consistent values such as, e.g., a
discontinuous function of tangency value higher than 1 degree, remarkable jumps of speed for the axes
involved in contouring are determined, with infinite acceleration values and discontinuous functions in the
speed rate profile, consequently. According to a value established by the user, the instruction JERKSMOOTH
allows to link smoothly, that is with acceleration and speed continuity, the speed profiles of the axis while
contouring. It should be noted that this smooth link inserts little variation in the performed trajectory
compared to the performed one, because around the contouring point the axes show a speed rate profile
different from the theoretical one.
The variable value expressed through a percentage value between 0 and 100, defines how much the speed
rates profiles should be smoothly linked. A value equal to 0 maintains a theoretical profile by creating some
discontinuities in the accelerations and in the speed rates profiles. A value equal to 100 obtains smooth
linked profiles, a better performance, but also the high deviation from the theoretical trajectory,
proportionate to the speed rate along the trajectory.

Note
The instruction is only applied in the movements with classic interpolation (instructions LINEARABS,
LINEARINC, CIRCABS, CIRCINC, HELICABS, HELICINC). It cannot be applied in movements of multiaxis
interpolation (instruction MULTIABS and MULTIINC).

LINEARABS

Syntax
LINEARABS [label],axis1, position1, [axis2, positon2 [, axis3, position3 [,...,

axis6, position6]]]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1[...axis2[...axis6]] name of axis devices
position1[...position2 constant or variable. Absolute move position
[...position6]]

Description
Linear interpolation, with absolute move, in positions specified by position1, position2, etc. The optional
parameter label is used in association with the instruction SETLABELINTERP to identify univocally the
displacement bloc.
Stepper axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In this case it
must be taken into account that the word interpolation refers to a coordinated movement of more axes
affected by discrete error due to axis piloting method.

Note
1. Contornature condition is evaluated only on the three first axes making up the reference system.

Adding and possibly modifying a further one, you obtain an incorrect management of the speed profile.
To obtain a correct movement, an instruction WAITSTILL between an instruction LINEARABS and the
other should be interposed.

2. If a reference local system is set using the instruction SETRIFLOC, the three axes that define the new
reference system should be always be indicated among the first three parameters of the instruction
LINEARABS, even if they do not displace anything.

GPL Language 125

Numeric control

LINEARINC

Syntax
LINEARINC [label],axis1, position1, [axis2, positon2 [, axis3, position3 [,...,

axis6, position6]]]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1[...axis2[...axis6]] name of axis devices
position1[...position2 constant or variable. Incremental move position
[...position6]]

Description
Linear interpolation, with incremental move, in positions specified by position1, position2, etc. The
optional parameter label is used in association with the instruction SETLABELINTERP to identify univocally
the displacement bloc.
Stepper axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In this case it
must be taken into account that the word interpolation refers to a coordinated movement of more axes
affected by discrete error due to axis piloting method.

Note
1. Contornature condition is evaluated only on the three first axes making up the reference system.

Adding and possibly modifying a further one, you obtain an incorrect management of the speed profile.
To obtain a correct movement, an instruction WAITSTILL between an instruction LINEARABS and the
other should be interposed.

2. If a reference local system is set using the instruction SETRIFLOC, the three axes that define the new
reference system should be always be indicated among the parameters of the instruction LINEARINC,
even if they do not displace anything.

MOVABS

Syntax
MOVABS axis1, value1 [, axis2, value2 [,..., axis6, value6]]

Arguments
axis1...[...axis6] name of axis devices
value1...[...value6] constant or variable. Value of absolute move

Description
It instructs the specified axes to execute an absolute movement according to values specified in value1
[,…value6].
To execute the move the axis must not be engaged in an interpolated move and it must be in position or in
window. The movement of the axis begins as soon as the instruction is executed. If more than one point-
to-point movement instruction is performed in the same task, they are chained. If a second task tries to
carry out point-to-point instructions on an axis that is already engaged in a move, this task will wait for the
move commanded by the first task to end.
It is also possible to change the velocity of a point-to-point movement and the following move using the
instruction SETVEL. The two movements will be linked by a speed ramp without stopping the axes.
If the instruction SETVEL is not used, the highest possible velocity is represented by the value of the
manual speed configured.
A point-to-point movement can be halted with the instruction STOP and subsequently restarted with the
instruction START. During the interruption of the movement the axis remains in a normal running status
even though physically it is not moving.
A move can be aborted with the instruction ENDMOV. In this case it cannot be restarted.

Note
1) Previously point-to-point movements:

· allowed no speed variation unless the axis was motionless. The current behaviour is similar to that
of interpolated movements.

· when interrupted by a STOP the corresponding axis assumed the status “in position”.
2) We suggest the reader to use linear interpolation instructions instead of point-to-point movement

instructions, when the number of moving blocks exceeds 32 and the blocks are made by micro-
segments. For further details references shall be made to the document “Limiti Firmware Movimento
Punto Punto.doc” available from TPA.

Example
Homing Routine on Interrupt

Albatros126

Numeric control

Example 2
; speed change
Function SpeedChange

setvel X, 20
setvel X, 20
movabs X, 100, Y, 200
movabs X, 150, Y, 180
setvel X, 5
movabs X, 80, Y, 100
waitstill X, Y

fret

MOVINC

Syntax
MOVINC axis1, value1 [, axis2, value2 [,..., axis6, value6]]

Arguments
axis1...[...axis6] name of axis devices
value1...[...value6] constant or variable. Value of incremental move

Description
It instructs each axis to execute an incremental move on the basis of the corresponding value.
To execute the move the axis must not be engaged in an interpolated move and it must be in position or
within tolerance. The movement of the axis begins as soon as the instruction is executed. If more than one
point-to-point movement instructions on the same task is executed, they are chained. If a second task tries
to carry out point-to-point instructions on an axis that is already engaged in a move, this task will wait for
the move commanded by the first task to end.
It is also possible to change the speed of a point-to-point movement and the following move using the
instruction SETVEL. The two movements will be linked by a speed ramp without stopping the axes.
If the instruction SETVEL is not used, the highest possible speed is represented by the value of the manual
speed configured.
A point-to-point movement can be halted with the instruction STOP and subsequently restarted with the
instruction START. During the interruption of the movement the axis remains in a normal running status
even though physically it is not moving.
A move can be aborted with the instruction ENDMOV. In this case it cannot be restarted.

Note
1) Previously point-to-point movements:

· allowed no speed variation unless the axis was motionless. The current behaviour is similar to that
of interpolated movements.

· when interrupted by a STOP the corresponding axis assumed the status ‘in position’.
2) We suggest the reader to use linear interpolation instructions instead of point-to-point movement

instructions, when the number of moving blocks exceeds 32 and the blocks are made by micro-
segments. For further details, references shall be made to the document “Limiti Firmware Movimento
Punto Punto.doc” available from TPA.

Example
Homing Routine of an axis

Example 2
; speed change
Function SpeedChange

setvel X, 20
setvel X, 20
movinc X, 100, Y, 200
movinc X, 150, Y, 180
setvel X, 5
movinc X, 80, Y, 100
waitstill X, Y

fret

MULTIABS

Syntax
MULTIABS [label],axis1, value1, [axis2, value2 [, axis3, value3 [,..., axis16,

value 16]]]

GPL Language 127

Numeric control

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1... axis16] name of axis devices
value1... [... value16] constant or variable. Value of theoretical position of displacement bloc end

Description
Absolute multi-linear interpolation up to 16 axes. This interpolation movement enables to advance the
speed profiles, setting their respective tolerances on the axes by means of the instruction SETTOLERANCE
(axis tolerance refers to a portion of path, where a constant interpolation ratio could not possibly exist).
Axes addition order into the MULTIABS instruction should always be the same and all the axes involved in
the movement should be present. The move blocs are queued in the normal lookahead and the movement
is partially joined to the execution of an instruction WAITSTILL, STARTINTERP or to the filling of the same
lookahead. From the axes involved in the move one can be used as a collider by means of the WAITCOLL
instruction. The optional parameter label is used in association with the instruction SETLABELINTERP to
identify univocally the displacement bloc.
Stepper axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In this case it
must be taken into account that the word interpolation refers to a coordinated movement of more axes
affected by discrete error due to axis piloting method.

Note
With this kind of interpolation, virtual reference systems (SETRIFLOC and RESRIFLOC instructions) cannot
be used. It is possible to perform some movements with chained axes (in CHAIN). The axes involved in the
multiaxis interpolated movement should be declared master of other axes not involved in the movement.
Furthermore, FeedRateOvveride can be applied.

Example
setquote x, 0
setquote y, 0
setquote z, 0
; first block
setveli x, velx1
setveli y, vely1
setveli z, velz1
multiabs x, positionx1, y,positiony1, z,positionz1
; second block
settolerance x,tolx2, y,toly2, z,tolz2
setveli x, velx2
setveli y, vely2
setveli z, velz2
multiabs x,positionx2, y,positiony2, z,positionz2
; third block
settolerance x,tolx3, y,toly3, z,tolz3
setveli x, velx3
setveli y, vely3
setveli z, velz3
multiabs x,positionx3, y,positiony3, z,positionz3
; fourth block
settolerance x,tolx4, y,toly4, z,tolz4
setveli x, velx4
setveli y, vely4
setveli z, velz4
multiabs x,positionx4, y,positiony4, z,positionz4
waitstill x, y, z

MULTIINC

Syntax
MULTIINC [label],axis1, value1, [axis2, value2 [, axis3, value3 [,..., axis16,

value 16]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1... axis16] name of axis devices
value1... [... value16] constant or variable. Value of theoretical position increase of displacement

bloc end

Description
Incremental multi-linear interpolation up to 16 axes. This interpolation movement enables to advance the
speed profiles, properly setting their respective tolerances on the axes by means of the instruction

Albatros128

Numeric control

SETTOLERANCE (axes tolerance refers to a portion of path, where a constant interpolation ratio could not
possibly exist). Command of axes addition into the MULTINC instruction should always be the same and all
the axes involved in the movement should be present. The movement blocs are queued in the normal
lookahead and the movement is partially joined to the execution of an WAITSTILL, STARTINTERP
instruction or to the filling of the same lookahead. From the axes involved in the movement one can be
used as a collider by means of the WAITCOLL instruction. The optional parameter label is used in
association with the instruction SETLABELINTERP to identify univocally the displacement bloc.
Stepper axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In this case it
must be taken into account that the word interpolation refers to a coordinated movement of more axes
affected by discrete error due to axis piloting method.

Note
With this kind of interpolation, virtual reference systems (SETRIFLOC and RESRIFLOC instructions) cannot
be used. It is possible to perform some movements with chained axes (in CHAIN). The axes involved in the
multiaxis interpolated movement should be declared master of other axes not involved in the movement.
Furthermore, FeedRateOvveride can be applied.

NORMAL

Syntax
NORMAL axis

Arguments
axis name of axis device

Description
It enables the position control on the axis and disables the axes chaining.
When the system is switched on, all the configured axes set in free status and switch to normal status when
this instruction is executed or when the first movement takes place.
However it is advisable to execute this instruction before carrying out axis reset procedure, to restore any
existing emergency conditions.

RESRIFLOC

Syntax
RESRIFLOC axis1, axis2, axis3

Arguments
axis1...axis3 name of devices. Type of axis

Description
It resets the absolute reference system for axes X Y Z (axis1, axis2, axis3).
It is normally used after setting a rototranslation reference system with a SETRIFLOC instruction.

SETINDEXINTERP

Syntax
SETINDEXINTERP axis, varname

Arguments
axis name of axis device
varname name of global integer variable

Description
It defines an index which counts the number of interpolation blocks executed by an axis.
During interpolation movements, the variable varname increases by 1 at each block change.

Note
The variable used as index must be a group global variable or a machine global.

SETLABELINTERP

Syntax
SETLABELINTERP axis, value

Arguments
axis name of device of type axis
value global variable of type integer

GPL Language 129

Numeric control

Description
In the variable value during a movement in interpolation, every time that the block is changed, the label
value of the new block is assigned. The label is defined in the instructions of interpolated movement.

Note
The variable value should be a global group variable or a machine global.

SETPFLY

Syntax
SETPFLY axis, status, speed, position,[error]

Arguments
axis name of axis device
status predefined constant. It indicates the status of the micro to be tested.

Acceptable values are:
ON
OFF

speed float constant or variable
position constant or variable
error integer variable. Error code

Description
It allows to reset the axis position ‘on the fly’. The resetting is piloted by a switch connected to the rapid
input of the axis connector (on boards with MECHATROLINK-II bus reference is made to EXTI1).
During axis movement, it waits for the corresponding home micro to switch to the indicated status. When
this transition is intercepted, the real position of the axis is reset on zero, without interrupting movement,
and target position and speed are automatically and dynamically redefined. If the set position is reached
without detecting an input change and the parameter error has not been set, a system error is generated.
If an error parameter has been set, this will contain the numeric code for the corresponding system error.
In this case the homing has not been executed and it is necessary to execute the SETQUOTE instruction to
reset the micro search.
To interrupt the ‘on the fly’ homing execution, execute a NORMAL on the axis or simply end the task that
requested the homing.

During the execution of the instruction it is not possible to execute the instructions SETPZERO and
FASTREAD at the same time on the same axis, if it is connected to boards with MECHATROLINK-II bus.

Example
Homing Routine on Interrupt

SETPFLYCHAINSTRAT

Syntax
SETPFLYCHAINSTRAT axis, type

Arguments
axis name of axis device
type Integer constant. The allowed values are:

0 = only the master axis zeroes the coordinate. The slave axis keeps the
previous coordinate.
different from 0 = master and slave synchronously zero the coordinate.

Description
This instruction enables to set, how the indicated slave axes will behave for a master setpfly instruction.
The instruction has to be executed indicating the slave axis. If the variable Type is omitted, a default value
equal to 0 is set.

SETPZERO

Syntax
SETPZERO axis, position [,error]

Arguments
axis name of axis device
position constant or variable. It is an incremental position
error integer variable. Error code

Albatros130

Numeric control

Description
It starts an incremental movement of the axis in the specified position and waits for the encoder zero
pulse to be detected (before reaching the specified position).
As soon as the pulse is detected the real position is set on zero and the axis is stopped.
If the set position is reached without detecting the Zero pulse and the parameter error has not been set, a
system error is generated. If an error parameter has been set, this will contain the numeric code for the
corresponding system error. In this case the set point has not been executed and the SETQUOTE
instruction must be executed to reset the pulse search.
The movement of the axes, generated by this instruction, can be interrupted with a STOP and restarted by
a START.
If the instruction is executed with S-CAN axes and with EtherCAT axes, a FREE instruction must be
executed first.

During the execution of the instruction it is not possible to execute the instructions SETPZERO and
FASTREAD at the same time on the same axis, if it is connected to boards with MECHATROLINK-II bus.

Example

FREE X
SETPZERO X, 100

SETPZEROCHAINSTRAT

Syntax
SETPZEROCHAINSTRAT axis, [value]

Arguments
axis name of axis device
value Integer variable. The allowed values are:

0 = only the master axis zeroes the coordinate, the slave axis keeps the
previous coordinate.
different from 0 = master and slave synchronously zero the coordinate.

Description
This instruction enables to set how the indicated slave axis will behave for a master SETPZERO instruction.
The instruction has to be executed on the slave axis.
If the variable value is omitted, a default value equal to 0 is set.

SETQUOTE

Syntyax
SETQUOTE axis, position

Arguments
axis name of axis device
position constant or variable

Description
This instruction forces, at the same time, the theoretical and the real position of an axis to the value
specified in position. If the axis is moving, this instruction causes the axis to stop abruptly as it is
suddenly set in position (real quote coincides with target quote). For this reason we do not recommend
using this instruction on moving axes if not at a very reduced speed.

Example
Axis Homing routine

SETQUOTECHAINSTRAT

Syntax
SETQUOTECHAINSTRAT axis, [value]

Arguments
axis name of axis device
value integer variable. The allowed values are:

0 = only the master axis zeroes the new coordinate, the slave axis keeps
the previous coordinate.
different from 0 = master and slave synchronously zero the coordinate.

GPL Language 131

Numeric control

Description
This instruction enables to set how the indicated slave axis will behave for a master SETQUOTE instruction
The instruction has to be executed on the slave axis.
If the variable value is omitted, a default value equal to 0 is set.

SETRIFLOC

Syntax
SETRIFLOC position1_ax1, position2_ax1, position3_ax1, position1_ax2,

position2_ax2, position3_ax2, position1_ax3, position2_ax3,
position3_ax3, axis1, axis2, axis3

Arguments
position1_ax1…position3 director cosine of the three axes
_ax3
axis1...axis3 name of devices. Axes

Description
It allows to activate an X′ Y′ Z′ Cartesian reference system with a rototranslation with respect to the X Y Z
absolute reference system of the machine, represented by the physical axes axis1, axis2 and axis3.
The nine arguments indicate the Director Cosines of the three local axes in reference to the absolute axes

cosa1 cosb1 cosg1

cosa2 cosb2 cosg2

cosa3 cosb3 cosg3

which compose the transformation matrix of the coordinates.
The origin of the new reference system is set in the current point.
All the interpolation movement instructions, involving axes X, Y and Z, refer to this reference system, until
the RESRIFLOC instruction is executed.

SETTOLERANCE

Syntax
SETTOLERANCE axis1, value1, [axis2, value2 [, axis3, value3 [,..., axis16, value

16]]]

Arguments
axis1...axis16 name of axis devices
value1...[...value16] constant or variable. Maximum tolerance value that can be applied to the

axis.

Description

For each defined axis it sets the tolerance value to apply on the multi-axis interpolation motion. Tolerance
value is the displacement value according to which the axis moves away from the original trajectory in a
multi-axis interpolation.
Tolerance has to be set for each axis involved in the interpolation and the system will advance the speed
rate profiles and respect the tolerances on all the axes without exceeding the ramp space, that represents
the upper limit to anticipate the profiles. A missing assignment of tolerance before a multi-axis instruction
means that the last tolerance will be applied on the axis itself. If a tolerance value has never been assigned
before, the same is considered with null tolerance. In this case each multi-axis motion, involving that axis,
does not set any ramp in advance.

Albatros132

Numeric control

A classic multi-axis trajectory is shown above and is made of two moving blocks, where the first one
consists in a displacement of 100 of the X-axis, while the second one consists in an Y-axis motion of 300
and in an X-axis motion of 100. The red line marks the trajectory in case of null tolerance, the blue one
instead is the trajectory in case of maximum tolerance axis.
The tolerance can also be seen as the area subtended by the speed rate profile during the time of advance,
as below.

GPL Language 133

Numeric control

START

Syntax
START axis

Arguments
axis name of axis device

Description
It restarts axis movement after a stop.

STARTINTERP

Syntax
STARTINTERP axis

Arguments
axis name of axis device

Description
It starts an interpolation whose channel is identified by axis. Normally the movement of axes associated to
an interpolation channel begins when the interpolation buffer is completely full (512 instructions) or when a
WAITSTILL instruction is given, to stop movement. This allows the algorithm of the interpolator to
determine optimal speed profiles, as it is provided with information concerning a large number of (or all)
stages of interpolation movement.
The STARTINTERP instruction allows to force axis movement even if the above described conditions are not
fulfilled.

Albatros134

Numeric control

STOP

Syntax
STOP axis

Arguments
axis name of axis device

Description
It interrupts the axis movement. The axis executes a deceleration ramp whose length depends on current
speed and configuration parameters.

Example
Homing Routine of an axis

SWITCHENC

Syntax
SWITCHENC axis1, [axis2, [direction, coordinate]]

Arguments
axis1 name of the device of axis type
axis2 name of the device of axis type indicates counting axis
direction predefined constant.

UP = encoder exchange, when the coordinate in positive direction is
exceeded
DOWN = encoder exchange, when the coordinate in negative direction is
exceeded

coordinate constant or double variable

Description
It allows to replace the encoder of axis1 with the encoder of axis2. The encoder is switched when the
quote indicated is exceeded in positive (UP) or in negative (DOWN) direction.
If the parameters direction and coordinate are left out, the encoder switch is immediately executed,
regardless of the axis position.

If only axis1 is declared, the functioning with a single encoder is restored.

Axis1 cannot be a stepper, counting, and virtual type, Axis2 can be a counting axis only. Furthermore,
neither axis1 nor axis2 can be involved in movements in chain as slave axes.

The instruction generates system error 4101 – Inconsistent management of axis AxisName, when either
axis1 or axis2 is declared as slave in a movement in chain, or when axis1 is running a FASTREAD or
SETPFLY instruction. Moreover, system error 4105 – Instruction not executable on axis AxisName may
occur when the declared axis type is not among the possible ones.

WAITACC

Syntax
WAITACC axis [,..., axis6]

Arguments
axis1[...,axis6] name of axis device

Description
It waits for the acceleration status or one of the subsequent statuses of all the indicated axes (1÷6).
The task where the instruction is executed is put on waiting status, until the axis reaches the acceleration
status or one of the subsequent statuses.

Axis statuses are identified by an integer:
- acceleration = 1
- steady = 2
- deceleration = 3
- coordinate = 4
- wait on the higher threshold = 5
- axis quiescent waiting = 6
- wait on the lower threshold = 7

GPL Language 135

Numeric control

WAITCOLL

Syntax
WAITCOLL axis, value, timeout, delta

Arguments
axis name of the axis device
value constant or variable. Absolute position value
timeout constant or variable. It is the waiting time, when the axis is still
delta constant or variable.it is the window value to obtain a still axis

Description
When the axis moves, the achievement of a programmed position can be prevented by an obstacle of
mechanical nature, represented at times also by the same workpiece. In this case the system generates an
error in the system “servoerror” or “not ended movement”. This instruction defines a position value at
which
- the system begins to verify the presence of a collision;
- the waiting time (timeout) before the axis, after the collision, is placed on “position”;
- the delta that defines the tolerance on the axis positioning.

When the axis exceeds its position, which is defined in value, the system checks, whether the axis is still
moving. Once the obstacle is intercepted, the critical situation is identified and, while ensuring the engine
thrust, the loop error exceeding the limit is not checked anymore. The motion direction on which the
collision occurred is verified, has the same direction of the last movement joined at the end. The timeout is
expressed in seconds, the delta value should be greater than 0.001 mm and less than the difference
between the programmed arrival position and the position value.
The instruction can be used with the multi-axis interpolator, since within such interpolator the temporary
loss of the interpolation link.
The instruction can be applied also to virtual axes and to Master axes of a movement in chain.
An error system is generated when:
· the axis is executing a classic interpolated movement (see instructions LINNEARBS, LINEARINC,.

CIRCABS, CIRCINC, HELICABS, HELICINC) or in coordinated motion
· the axis is a slave-axis
· the axis is a counting axis or a stepper axis
· the value set is higher than the end-movement position

Example

; sets the X axis position
SETQUOTE X, 0.0
; moves the x axis to the absolute position 1000
MOVABS X, 1000.0
; waits for the collision point, waits 2 seconds before setting
; the axis on "position", after
; intercepting a collision with a precision of 0.01 mm
WAITCOLL X, 980.0,2.0,0.01

WAITDEC

Syntax
WAITDEC axis1 [,..., axis6]

Arguments
axis1 [...,axis6] name of axis device

Description
Waiting for the deceleration status or one of the subsequent statuses on all the specified axes (1÷6).
The task where the instruction is executed is put in stand-by, until the axis reaches the deceleration,
coordinate, wait on the higher range, wait on the lower range and wait while the axis stops statuses.

Axis statuses are identified by an integer:
- acceleration = 1
- steady = 2
- deceleration = 3
- coordinate = 4
- wait on the higher range = 5
- wait while the axis stops = 6
- wait on the lower range = 7

Albatros136

Numeric control

WAITREG

Syntax
WAITREG axis1 [,..., axis6]

Arguments
axis1 [...,axis6] name of axis device

Description
It waits for the regime status or one of the subsequent statuses of all the specified axes (1÷6).
The task where the instruction is run is put on hold until the axis is in the statuses of steady, deceleration,
coordinate, wait on the higher range, wait on the lower range and wait while the axis stops statuses.

Axis statuses are identified by an integer:
- acceleration = 1
- steady = 2
- deceleration = 3
- coordinate = 4
- wait on the higher threshold = 5
- wait while the axis stops = 6
- wait on the lower threshold = 7

WAITSTILL

Syntax
WAITSTILL axis1 [,..., axis6]

Arguments
axis1 [...,axis6] name of axis device

Description
It waits for all the specified axes (1÷6) to end movement (Position status).

Example
Axis Homing routine

WAITTARGET

Syntax
WAITTARGET axis1 [,…, axis6]

Arguments
axis1 […,axis6] name of axis device

Description
It waits for the theoretical current position of all the specified axes (1÷6) to reach target position. The real
quote will not match the theoretical position until the loop error is cleared.

WAITWIN

Syntax
WAITWIN axis1 [,..., axis6]

Arguments
axis1 [...,axis6] name of axis device

Description
It waits for the thereshold status or one of the subsequent statuses of all the specified axes (1÷6).
The task where the instruction is executed is put on wait status, until the axis reaches the wait on the
higher range, wait on the lower range and wait while the axis stops statuses.

Axis statuses are identified by an integer:
- acceleration = 1
- steady = 2
- deceleration = 3
- coordinate = 4
- wait on the higher range = 5
- wait while the axis stops = 6
- wait on the lower range = 7

GPL Language 137

Numeric control

Axis Parameter

Reading/Writing

DEVICEID

Syntax
DEVICEID device, variable

Arguments
device name of the device or the device parameter
variable integer variable receiving the logical address

Description
It writes in variable the logical address associated to any kind of device.
This instruction may enable an univocal ‘key’ associated to the device, as an index or a search key in data
structures.

GETAXIS

Syntax
GETAXIS axis, dataname, varname
GETAXIS axis, dataname1, dataname2, [...,dataname20,] matrix[row]

Arguments
axis name of axis device
dataname predefined constant (See list below)

Axis parameter(1÷20)
varname variable or name of device
row constant or integer variable. Row number of the matrix
matrix name of matrix

Description
In the first version the instruction reads one datum (dataname) of an axis and saves it in a variable.
In the second version, the instruction reads various data of an axis at the same time (from 1 to 20) and
saves it, in the same order as it was requested, in the elements of the specified matrix row.
In this case the number of columns of the matrix must correspond to the number of requested data.
The list reported below includes all the predefined constants that can be assigned to the parameter
dataname.
The first column is the name of the constant.
The second describes the quantity of the axis read by the instruction.
The third is the format of the datum returned to the variable varname or the matrix[row], where:
· d means double,
· f means float,
· i means integer
· b means char
If the declaration of the variable, where the data will be memorised, is different from the value returned by
the instruction, the compiler changes the datum (cast) to the type requested by the user. Sometimes this
implies losing a certain amount of data. For example a double value equal to 12,345, changed into an
integer, becomes 12. For this reason we recommend keeping to the requested types when declaring
varname and matrix[row] variables.
The last column describes either the return value or the measuring unit of the relative parameter.
Constants beginning with "_CFG" allow to configuration values, that is the values set when the machine is
started.

constant description type return value

_CFGTYPE Axis typology i 1=analog, 3=stepping motor,
4=digital, 5=count, 6=not used,
7=virtual

_CFGUM unit of measure i 0=millimetres,1=inches,2=degre
es,3=rev.

_CFGRIS resolution d impulses per _UM

_CFGVMAX maximum speed f m/1′ or inch/1″ or degrees/1″ or
rev/1′

Albatros138

Numeric control

constant description type return value

_CFGVMAXD maximum speed in
manual mode

f m/1′ or inch/1″ or degrees/1″ or
rev/1′

_CFGVMAXI maximum interpolation
speed

f m/1′ or inch/1″ or degrees/1″ or
rev/1′

_CFGPHINV encoder phase inversion b 0=no inversion, 1=inversion

_CFGRFINV reference inversion b 0=no inversion, 1=inversion

_CFGZIND enable on-index position
reset

b 0=disabled, 1=enabled

_CFGTRPP type of
acceleration/deceleration
ramp in point-to-point
mode

b 0=linear, 1= ‘S’ shaped , 2=
double ‘S’ shaped

_CFGKFFA acceleration feed forward f

_CFGKFFAI interpolation acceleration
feed forward

f

_CFGSRPP stepper ramp start speed f m/1′ or inch/1″ or degrees/1″ or
rev/1′

_CFGACC acceleration time from 0
to _CFGVMAX

i msec

_CFGDEC deceleration time from
_CFGVMAX

i msec

_CFGACCI acceleration time from 0
to CFGVMAXI

i msec

_CFGDECI deceleration time from
_CFGVMAX to 0

i msec

_CFGQLP positive axis limit d position

_CFGQLN negative axis limit d position

_CFGKP proportional coefficient f

_CFGKI integral coefficient f

_CFGKD derivative coefficient f

_CFGKFF feed forward f percentage

_CFGKPS slave axis proportional
coefficient

f

_CFGKIS slave axis integral
coefficient

f

_CFGKDS slave axis derivative
coefficient

f

_CFGQEAP positive loop error d position

_CFGQEAN negative loop error d position

_CFGKPI interpolation proportional
coefficient

f

_CFGKII interpolation integral
coefficient

f

_CFGKDI interpolation derivative
coefficient

f

_CFGTMINP minimum positive voltage f volt

_CFGTMINN minimum negative voltage f volt

_CFGSTMINP positive threshold voltage f volt

_CFGSTMINN negative threshold voltage f volt

_CFGESC axis moving timeout i msec

_CFGDSE enable dynamic servoerror b 0=disabled, 1=enabled

GPL Language 139

Numeric control

constant description type return value

_CFGAEN enable automatic adjust b 0=disabled, 1=enabled

_CFGOFFSET adjust voltage - initial
offset

f volt

_CFGCEE incorrect encoder
connection position

d position

_CFGNOTCH notch filter frequency i Hz

_CFGBUFI integrative calculation
dimension buffer

i [1, 200]

_CFGQAP positive quiescent
threshold

d

_CFGQAN negative quiescent
threshold

d

_CFGTRI type of
acceleration/deceleration
ramp in interpolation
mode

f 0=linear, 1=‘S’ shaped, 2=double
‘S’ shaped

_CFGKFFI interpolation feed forward f percentage

_CFGAAF wait while the axis stops b 0=disabled, 1=enabled

_CFGENCTYPE type of encoder i 0=simulated or absent, 1=real

_SRPP stepper ramp start speed f m/1′ or inch/1″ or degrees/1″ or
rev/1′

_ACC acceleration time from 0
to _VMAX

i msec

_DEC deceleration time from
_VMAX to 0

i msec

_ACCI acceleration time from 0
to _VMAXIin interpolation
mode

i msec

_DECI deceleration time
from_VMAXI to 0 in
interpolation mode

i msec

_QLP positive axis limit d position

_QLN negative axis limit d position

_KP proportional coefficient f

_KI integral coefficient f

_KD derivative coefficient f

_KFF feed forward f percentage

_KPS slave axis proportional
coefficient

f

_KIS slave axis integral
coefficient

f

_KDS slave axis derivative
coefficient

f

_QEAP positive loop error d position

_QEAN negative loop error d position

_VEL point-to-point speed f m/1′ or inch/1″ or degrees/1″ or
rev/1′

_VELI interpolation speed f m/1′ or inch/1″ or degrees/1″ or
rev/1′

_MODE axis functioning mode b 1=normal, 2=free, 8=interpol.,
10=coord.

_PHINV encoder phase inversion b 0=no inversion, 1=inversion

Albatros140

Numeric control

constant description type return value

_RFINV reference inversion b 0=no inversion, 1=inversion

_ZIND enable on-index position
reset

b 0=disabled, 1=enabled

_KPI interpolation proportional
coefficient

f

_KII interpolation integral
coefficient

f

_KDI interpolation derivative
coefficient

f

_KFFI interpolation feed forward f percentage

_KFFA acceleration feed forward f percentage

_KFFAI interpolation acceleration
feed forward

f percentage

_ESC axis moving timeout i msec

_CEE incorrect encoder
connection position

d position

_NOTCH notch filter frequency i Hz

_BUFI integrative calculation
dimension buffer

i [1,200]

_QAP positive quiescent
threshold

d

_QAN negative quiescent
threshold

d

_QEAPINV positive loop error limit in
inversion

d

_QEANINV negative loop error limit in
inversion

d

_OFSCOORD offset position coordinated
move

d

_MS axis typology master or
slave

b 0=not in chain, 4=master,
5=slave

_QENC encoder position d position

_QR real position d position

_RIS resolution used by the
axis

d

_ST axis status b 1=accel., 2=regime, 3=decel.,
4=position, 5=wait high thres.,
6=wait while the axis stops,
7=wait low thres., 8=start

_QT theoretical position d position

_EA loop error d position

_FF feed forward i

_VC current speed f

_P proportional correction i

_I integral correction i

_D derivative correction i

_FLGS axis flags b

_VCR real speed f

_ADJUST axis compensation offset i whole number showing the
tension to be transmitted to the
drive, as seen from the side of

GPL Language 141

Numeric control

constant description type return value

the DAC axis board. The full scale
of the drive is 10 Volt and that of
the DAC is 32767.

_DAC DAC value i whole number representing the
tension to be transmitted to the
drive, as seen from the side of
the DAC axis board. The full scale
of the drive is 10 Volt and that of
the DAC is 32767.

_ACCINST instantaneous acceleration
value

f

_FFA acceleration feed forward i

_GONETIME elapsed time from the
beginning of the
movement

f sec (0 for slave axis and stepper
axis)

_RESTIME time left until the end of
the movement. The values
are related to the
allocated movement in the
buffer when requested.

f sec (0 for slave axis, coordinated
moving axes and stepper axis)

_TARGETTIME time taken to generate
the target position

f microseconds

_GONESPACE space from the beginning
of the movement. The
values are related to the
allocated movement in the
buffer when requested.

f percentage (100 for slave axis,
interpolated moving axes, stepper
axes)

_RESSPACE space left until the end of
the movement. The values
are related to the
allocated movement in the
buffer when requested.

f percentage (100 for slave axis,
interpolated moving axes and
stepper axis and ISO movement)

_AXESJERK enabling the jerk control
on the axis

b 1=enabled control, 0=control not
enabled

_MOVEJERK enabling the jerk control
on the movement on
which the axis is engaged

b 1=enabled control, 0=control not
enabled

_MOVETYPE type of motion in which
the axis is engaged.

b 1=classical interpolated
movement, 2=interpolated multi-
axis motion,
3=coordinated movement
4=movement point-to-point,
5=movement in chain (slave axes
only)

_PARTYPESET type of parameter axes in
use during the movement

i 1=interpolation, 0=point-to-point

_AXINRIFLOC current axe in a local
reference system

i 1=yes, 0=no

_QTARGETTOOL target position of the axis.
In case of ISO
interpolation target
position of the coordinate
of the tool point of the
axis

d

_QREALTOOL real position of the axis.
In case of ISO
interpolation real position
of the coordinate of the
tool point of the axis

d

Albatros142

Numeric control

constant description type return value

_BACKLASH value of the mechanical
clearance defined for the
axis

d

_DISABLED disabling an axis b 1=disabled axis, 0=enabled axis

_DYNLIMIT enabling dynamic numeric
control of axis limits

b 1=enabled control, 0=disabled
control

_AXESFEED override feedrate value
currently applied to the
axis

f

_CORRLIN kind of linearity correction
in use

i 0=no correction in use, 1=self
correction, 2=crossed correction,
3=self correction with crossed
correction

_VELISO the tool point speed
during the ISO -
movement

f

_ISOSTOPS number of the forced
stops of the interpolated
movement due to
borderline situations of
the lookahead

i

_CURRATIO value of the chaining ratio
currently used

d

_DYNRATIO returns, if a dynamic
change of the chaining
ration is in execution

i 0=no, 1=yes

_RESBLOCK number of the
displacement blocs still to
be performed

i

_EXECBLOCK number of performed
displacement blocks

i

_TOTALBLOCK total number of
queued displacement
blocs in the movement
(current value)

i

_SWITCHENC monitors if the encoders
are being exchanged

i -1=the axis does not use the
SWITCHENC instruction, 0=a
SWITCHENC instruction has been
executed, but the axis is using its
encoder, 1=a SWITCHENC
instruction has been executed
and the axis is using the encoder
of the counting axis

_QOFSENC encoder offset value d

_LENSETPZERO distance covered to reach
the zero pulse

d position

_TORQUEINST instantaneous value of
torque

i

_CURRSLOPE Returns the type of ramp
currently used in the rapid
movements

i 0=linear, 1=‘S’ shaped, 2=double
‘S’ shaped

_CURRSLOPEI Returns the type of ramp
currently used in the
interpolated movements

i 0=linear, 1=‘S’ shaped, 2=double
‘S’ shaped

_CURRSLOPEI Returns the type or ramp
used in the interpolated
movements

i 0=linear, 1=‘S’ shaped, 2=double
‘S’ shaped

GPL Language 143

Numeric control

constant description type return value

_AXISPAR1...AXISPAR8 Optional additional
parameters for EtherCAT
axis

i number

_ISOMOVETYPE Type of ISO motion in
execution

i 0=quick ISO motion,
1=interpolated ISO motion, -
1=other

_QMAINENC Real position of the main
encoder when the
secondary encoder is in
use

d

Point-to-point Movement

SETACC

Syntax
SETACC axis, [value]

Arguments
axis name of axis device
value constant or variable. Acceleration time

Description
It assigns to the axis the acceleration time indicated by value. Acceleration time is expressed in
milliseconds.
If value is omitted, it assigns the configuration parameter. If the instruction is placed between two
instructions MOVABS or MOVINC, the first movement instruction (with stop of the movement)is executed,
using the acceleration and deceleration parameters previously set. The second instruction is executed,
when the new parameter of acceleration are applied. SETACC instruction has an effect only on the
movements coming after its execution.
If the specified value is smaller than the configuration parameter then the latter is taken.

See also SETDEC, SETACCI and SETDECI.

SETDEC

Syntax
SETDEC axis, [value]

Arguments
axis name of axis device
value constant or variable. Deceleration time

Description
It assigns to the axis the deceleration time indicated by value. Deceleration time is expressed in
milliseconds.
If value is omitted, the configuration parameter is taken. If the instruction is placed between two
instruction, MOVABS or MOVINC, the first movement instruction (with stop of the movement), is executed
using the acceleration and deceleration parameters previously set. The second instruction is executed,
when the new parameter of deceleration are applied. SETACC instruction has an effect only on the
movements coming after its execution.
If the specified value is smaller than the configuration parameter then the latter is taken.

See also SETACC, SETACCI and SETDECI.

SETDERIV

Syntax
SETDERIV axis [, value]

Arguments
axis name of axis device
value constant or variable. Char and integer variables are not allowed

Description
It assigns the value derivative action coefficient to the axis.

Albatros144

Numeric control

If value is omitted, the configuration derivative action coefficient is used.
The instruction can not be applied to a stepping motor.
See also instruction SETDERIVI.

SETFEED

Syntax
SETFEED axis, value

Arguments
axis name of axis device
value constant or variable. It represents the feed rate override percentage

Description
It modifies the percentual value of the axis feed rate override in relation to point-to-point movements.
See also SETFEEDI.

SETFEEDF

Syntax
SETFEEDF axis [, value]

Arguments
axis name of axis device
value constant or variable. Feed rate override percentage

Description
It assigns the value feed forward percentage to the axis.
If value is omitted, the configuration feed forward coefficient is used.
If the instruction is applied to a stepping motor a system error is generated. The same happens if the
value variable is set on a value which is not included between 0 and 100.
See also instructions SETFEEDFI, SETFEEDFA, SETFEEDFAI.

SETFEEDFA

Syntax
SETFEEDFA axis [, value]

Arguments
axis name of axis device
value constant or variable. Feed forward percentage

Description
It assigns to the axis the acceleration feed forward percentage valuefor point-to-point movements.
If value is omitted, the configuration feed forward coefficient is used.
If the instruction is applied to a stepping motor a system error is generated. The same happens if the
value variable is set on a value which is not included between 0 and 100.
See also instructions SETFEEDF, SETFEEDFI, SETFEEDFAI.

SETINTEG

Syntax
SETINTEG axis [, value]

Arguments
axis name of axis device
value constant or variable. Integral action coefficient. Char and integer variables

are not allowed.

Description
It assigns the value integral action coefficient to the axis.
If value is omitted, the configuration integral action coefficient is used.
The instruction can not be applied to stepping motors.
See also instruction SETINTEGI.

GPL Language 145

Numeric control

SETMULTIFEED

Syntax
SETMULTIFEED axis1, value1, axis2, value2 [, axis3, value3 [,…, axis16, value 16]]]

Arguments
axis1…axis16 name of devices of type axis
value1…[…value16] constant or variable. It represents the feed rate override percentage

Description
It modifies the feed rate override percentage value of the axes indicated, as far as the point-to-point
movements are concerned. For each axis a different value can be set.

SETPROP

Syntax
SETPROP axis [, value]

Arguments
axis name of axis device
value constant or variable. Proportional action coefficient. Chars and integers are

not allowed

Description
It assigns the proportional action coefficient value to the axis.
If value is omitted, the configuration proportional action coefficient is used.
The instruction can not be applied to stepping motors.
See also instruction SETPROPI.

SETSLOPE

Syntax
SETSLOPE axis [, value]]

Arguments
axis name of the axis device
value constant or variable integer. Type of ramp.

Description
It sets the type of ramp to be used for the rapid movement:
· 0 linear ramp
· 1 “S” shaped ramp
· 2 double “S” shaped ramp

If value is omitted, the configuration ramp is restored.

The type of ramp can only be changed with stationary axis in POSITION. Otherwise the system error no.
"4101 – Inconsistent management of axis AxisName” occurs.
You can check the type of the ramp currently set for the axis in association with this instruction, through
the instruction GETAXIS and the parameter_CURRSLOPE.

See also the instruction SETSLOPEI.

SETVEL

Syntax
SETVEL axis [, speed]

Arguments
axis name of axis device
speed float constant or float variable

Description
It sets the highest speed of the axis for point-to-point movements.
Speed is expressed in the axis measuring unit, specified in configuration.
If the programmed value is higher than the value of configuration, the latter is used.
If the speed argument is omitted, the configuration value is used. Only positive speed values are allowed.
See instruction SETVELI.

Albatros146

Numeric control

Example
Axis Homing routine

Interpolated Movement

LOOKAHEAD

Syntax
LOOKAHEAD [value]

Arguments
value constant or variable. Look ahead value

Description
Sets the interpolator look ahead value. Look ahead is the number of interpolation blocks that will be
processed before starting axes motion. It allows generation of optimized speed profiles, specifically when
using "S" shaped acceleration and deceleration ramps.
In case value parameter is not specified, a default look ahead of 512 blocks is assumed.
Maximum allowed value is 4096/channelsnumber, where channelsnumber is the number of
interpolation channels as defined in module configuration. Minimum allowed value is 256.

Note:
By interpolation block we mean the set of information associated to any instruction of interpolated
displacement (e.g. LINEARABS).

Example
LOOKAHEAD 1024

SETACCI

Syntax
SETACCI axis1 [,..., axis6] [, value]

Arguments
axis1,[...axis6] name of axis device
value constant or variable. Acceleration time

Description
It assigns to axes axis1 and axis2 the interpolation movement acceleration time indicated by value. Time
is expressed in milliseconds. If value is omitted, the configuration parameter is taken instead.

See also SETACC, SETDEC and SETDECI.

SETACCLIMIT

Syntax
SETACCLIMIT axis,[value]

Arguments
axis name of axis device
value operating time constant

Description
It enables and disables the automatic calculation of interpolation regime speed according to the acceleration
tolerated by the axes. The value parameter is a time constant used to define the speed limit tolerated by
the axis, in milliseconds. This parameter is optional. If it is omitted, the instruction will disable the
automatic calculation. A standard value for this parameter is 30 milliseconds. If this time is further reduced,
the profile will slow down making movement more gentle. By increasing this time, the opposite effect is
obtained. This instruction can’t be applied to helical interpolations.

SETACCSTRATEGY

Syntax
SETACCSTRATEGY axis, [value]

Arguments

GPL Language 147

Numeric control

axis name of axis device
[value] integer constant or variable

Description
Allows the selection of the type of acceleration wanted for the following interpolation movements. The
instruction is executed for all the axes involved in the interpolation.
There are two admissible values for the parameter value: 0 and 1. If the value 0 is passed, the usual
acceleration strategy is adopted (the least of the axes involved in the interpolation is chosen as profile
acceleration). If the value is equal to 1 the highest acceleration that the individual axes can support is
taken (considering the individual components). In this latter case, only the linear interpolation strokes will
be considered and the algorithm will work only so long as the acceleration and deceleration ramps are
contained in the same interpolation stroke.

SETAXPARTYPE

Syntax
SETAXPARTYPE axis, [value]

Arguments
axis name of the axis type device
[value] variable or integer constant

Description
When a multilinear interpolation is performed, this instruction allows to change the axis parameter set in
use, changing from the typical parameters of the interpolation (value =1) to those used for the point-to-
point movement (value = 0). If the variable value is omitted, the parameters used are those of
interpolation.
The parameter set change can only be made if the axis is still in POSITION status, otherwise the instruction
generates the system error no. 4101 "Inconsistent management of axis AxisName".

SETCONTORNATURE

Syntax
SETCONTORNATURE [value1[,value2]]

Arguments
value1 constant or variable. Maximum contouring angle
value2 constant or variable. Maximum slowdown angle

Description
Sets the minimum angle between the tangents of two trajectories carried out in interpolation. If the angle is
exceeded, the machine will not carry out the contouring, that is, the axes will stop at the end of the first
trajectory and then restart along the second one. For this reason a maximum contouring angle is defined as
value1 and represents the maximum angle between two displacement lines, below which the movement
does not stop. If the angle between two displacement blocks is greater than the maximum contouring
angle, the movement stops. To avoid the stop, a maximum deceleration angle (value2) can be set. If the
angle between two displacement blocks is included between the maximum contouring angle and the
maximum deceleration angle, the movement does not stop, but only slows down. So, the maximum
deceleration angle represents the angle over which the movement must be compulsorily stopped. For
angles less than the maximum contouring angle the movement does not slow down, for angles between
the maximum contouring angle and the maximum deceleration angle the movement stops.
Value1 and value2 are optional parameters; if both are not set, 15 degrees are taken on as a default
value. If only the first parameter is set, maximum deceleration angle is equal to the maximum contouring
angle. The deceleration feature is disabled when the maximum deceleration angle is less or equal than the
maximum contouring angle. The maximum deceleration angle is equal to 180 degrees. If a greater value is
set, the generates the following error no. 4399: "Parameter out of range".
The deceleration feature is enabled only if the instruction JERKSMOOTH is active; however, the contouring
is always active.

Nota
The use of this instruction is correlated to the use of the instructions JERKSMOOTH and SETSLOWPARAM,
and it is only applied in the movements with classic interpolation (LINEARABS, LINEARINC, CIRCABS,
CIRCINC, HELICABS, HELICINC instructions).

SETDECI

Syntax
SETDECI axis1 [,..., axis6] [, value]

Arguments

Albatros148

Numeric control

axis1,[...axis6] name of axis device
value constant or variable. Deceleration time

Description
It assigns to axes axis1 and axis2 the interpolation movement deceleration time indicated by value. Time
is expressed in milliseconds. If value is omitted, the configuration parameter is taken instead.

See also SETACC, SETDEC, and SETACCI.

SETDERIVI

Syntax
SETDERIVI axis [, value]

Arguments
axis name of axis device
value constant or variable. Derivative action coefficient. Char and integer variables

are not allowed

Description
It assigns to the axis the value derivative action coefficient during axis interpolation movement.
If value is omitted, the configuration derivative action coefficient is used.
The instruction can not be applied to a stepping motor.
See also instruction SETDERIV.

SETFEEDFAI

Syntax
SETFEEDFAI axis [, value]

Arguments
axis name of axis device
value constant or variable. Feed forward percentage

Description
It assigns to the axis the acceleration feed forward percentage value for interpolation movements.
If value is omitted, the configuration feed forward coefficient is used.
If the instruction is applied to a stepping motor a system error is generated. The same happens if the
value variable is set on a value which is not included between 0 and 100.
See also instructions SETFEEDF, SETFEEDFI, SETFEEDFA.

SETFEEDI

Syntax
SETFEEDI axis, value

Arguments
axis name of axis device
value constant or variable. It represents the feed rate override percentage

Description
It modifies the percentual value of axis feed rate override in relation to interpolation movements. See also
instruction SETFEED.

SETFEEDFI

Syntax
SETFEEDFI axis [, value]

Arguments
axis name of axis device
value constant or variable. Feed forward percentage

Description
It assigns to the axis the feed forward percentage value for interpolation movements.
If the argument value is omitted, the system takes the feed forward percentage set in the configuration
parameters of the concerned axis device.
The instruction can not be applied to stepping motors.

GPL Language 149

Numeric control

The value variable admits values included between 0 and 100.
See also instructions SETFEEDF, SETFEEDFA, SETFEEDFAI.

SETINTEGI

Syntax
SETINTEGI axis [, value]

Arguments
axis name of axis device
value constant or variable. Integral action coefficient. Char and integer variables

are not allowed.

Description
It assigns to the axis the integral action coefficient value used during axis interpolation movements.
If value is omitted, the configuration integral action coefficient is used.
The instruction can not be applied to stepping motors.
See also instruction SETINTEG.

SETPROPI

Syntax
SETPROPI axis [, value]

Arguments
axis name of axis device
value constant or variable. Proportional action coefficient. Chars and integers are

not allowed

Description
It assigns to the axis the proportional action coefficient value used during axis interpolation movements.
If value is omitted, the configuration proportional action coefficient is used.
The instruction can not be applied to stepping motors.
See also instruction SETPROP.

SETSLOPEI

Syntax
SETSLOPEI axis [, value]]

Arguments
axis name of the axis device
value constant or variable integer. Type of ramp.

Description
It sets the type of ramp to be used for the movement in the interpolation (where allowed):
· 0 linear ramp
· 1 “S” shaped ramp
· 2 double “S” shaped ramp

If value is omitted, the configuration ramp is restored.

The type of ramp can only be changed if the axis has not been used in an interpolation channel, yet.
Otherwise the system error no. "4101 – Inconsistent management of axis AxisName” occurs.
You can check the type of the ramp currently set for the axis in association with this instruction, through
the instruction GETAXIS and the parameter _CURRSLOPEI; by means of the parameter _REALSLOPEI you
can see the type of ramp used by the axis (the ramp of the channel in which the axis is engaged).

See also the instruction SETSLOPE.

SETSLOWPARAM

Syntax
SETSLOWPARAM axis [,value1,value2]

Arguments
axis name of device of axis type
value1 double constant or variable. General reduction factor

Albatros150

Numeric control

value2 double constant or variable. Inversion reduction factor

Description
This instruction modifies the parameters needed to calculate the deceleration, where deceleration features
are active while contouring (see instruction SETCONTORNATURE).
Deceleration speed is initially calculated for each axis in a technical way. In case of motion reversal, it can
be reduced using value2. Later, among all the calculated speed rates, the minimum speed rate is taken
into account, in order to comply with the dynamic of the more limiting axis. Finally, a further reduction of
the deceleration speed of a factor which depends on value1, is possible.

If value1 or value2 are omitted, values by default are taken on, so that both the parameters do not take
effect. The value1 parameter represents the reduction percentage value of the theoretical speed
slowdown. The applied slowdown speed is equal to (100 value1((100-valore1)/100))* theoretical speed.
Maximum reduction value is equal to 100. In this case the resulting speed corresponds to 1% of the
theoretical speed. Vice versa, when the value is 0 or it is omitted, the default value, that is, the entire
theoretical speed, is taken into account.
The parameter value2 represents the percentage of reduction, between 1 and 10 times, of the theoretic
slowdown, should an axis reverse its motion. In particular, when value2 is 100, the speed rate drops by 10
times. Vice versa, when it is equal to zero or it is omitted, the speed rate does not drop.
The instruction generates the system error 4399: "Parameter out of range", when the value set is less than
0 or greater than 100. It is important to remember that if the parameter value1 is omitted, also the
value2 parameter must be omitted.

Note
This instruction requires the instructions JERKSMOOTH and SETCONTORNATURE and is only effective with
classical interpolation (instructions LINEARABS, LINEARINC, CIRCABS, CIRCINC, HELICABS, HELICINC).

SETVELI

Syntax
SETVELI axis1 [,..., axis6] [, speed]

Arguments
axis1 [...axis6] name of axis device to be interpolated
speed float constant or float variable

Description
It sets the highest speed of axis1 and axis2 for interpolation movements.
Speed is expressed in the axis measuring unit, specified in the configuration parameter. If the speed
argument is omitted, maximum configuration speed is taken.
Stepper axes can be used in this instruction only if they are controlled by a TRS-AX remote.
See instruction SETVEL.

SETVELILIMIT

Syntax
SETVELILIMIT axis, speed

Arguments
axis name of axis device
speed float constant or float variable

Description
It sets the single speed components of the indicated axis, for interpolated movements.
The speed is expressed in the UOM of the axis.

Coordinated Movement

SETFEEDCOORD

Syntax
SETFEEDCOORD axis, value1, value2

Arguments
axis name of the device of axis type
value1 double constant or variable. It represents the maximum percentage of feed

rate override.

GPL Language 151

Numeric control

value2 integer constant or variable. It represents the number of real-time, where
the feed rate variation has to be applied.

Description
This modifies value1 percentage of the axis feed rate's maximal instantaneous variation. Feed rate is not
changed anymore in the time, expressed as a real-time and defined into the value2 variable. In other
words, after applying a variation of feedrate override of value1, as highest value, by value2 real-times,
any new feedrate variation cannot be applied. The combination of these two parameters defines a sort of
acceleration/deceleration, that the axis can sustain. By modulating these two parameters, we can obtain
some "step ramps" of the ramp required.

Note
For each axis involved in the coordinate move feedrate value and time should be set, otherwise the default
values value1=100 and value2=1 are taken. During the execution of the coordinated move (instruction
COORDIN), the system calculates again the parameters value1 and value2 to apply to the move
according to all the involved axes' parameters. The motionless axes are excluded from the control. Both
parameters are calculated as follows:
value1: minumum value set on the moving axis;
value2: value obtained dividing value1 by the lowest ratio value1/value2.

Example

Function CoordinatedMove

Setquote X,0
Setquote Y,0
Setquote Z,0

setFeedCoord X, 20, 80
setFeedCoord Y, 10, 1
setFeedCoord Z, 3, 3

coordin matrix, deltaT, UP, rowInit, rowEnd,mask,
_X,columnX, Y,columnY, Z,columnZ

waitstill x,y,z

fret

Suppose that in a specific passage of the coordinated move the z-axis does not move. Set parameters result to
be

Max_Variation = 10
Delta_T = 10 / 0.25 = 40

Therefore we have to following trace of oscilloscope, where the speed rate profile of the X-axis is marked in
green and that of the Y-axis is marked in yellow.

Albatros152

Numeric control

SETOFFSET

Syntax
SETOFFSET axis, position

Arguments
axis name of axis device
position constant or variable. Offset for coordinated movements

Description
It allows to apply an offset to the position of a coordinated movement.
The offset specified by the position parameter will be used in later coordinated movements, adding the
indicated position to all the positions in the table.
See also instruction COORDIN.

Chained Movement

RATIO

Syntax
RATIO axis, [value]

Arguments
axis name of axis device
value costant or variable. Reduction ratio.

Description
Sets the chaining ratio of a slave axis with respect to its master. Slave axis movements will be scaled with
respect to master movements by the set chaining ratio. If the value parameter is omitted, the ratio is reset
to 1.0 (identical movements). Instruction generates system error if executed when the axis is not in slave
status and the corresponding master axis is not in position status.
See CHAIN instruction.

Example

CHAIN X, Y
RATIO Y, 0.5 ; reduction ratio 1/2

GPL Language 153

Numeric control

MOVABS X, 100 ; Y axis will move to position 50
WAITSTILL X

SETDYNRATIO

Syntax
SETDYNRATIO axis, value

Arguments
axis name of the axis type device
value constant or double variable

Description
This instruction allows the chaining ratio to be changed in a dynamic way during the movement of the
master axis. It is possible to apply the new value of the chaining ratio, even though the previous variation
has not ended. The declared axis must be a slave axis.
If the instruction is executed with master axis at the status POSITION, the new value of the chaining ratio
value is instantaneously applied.
The variation of the chaining ratio occurs by means of a linerar acceleration (or deceleration) ramp. The
acceleration value employed is given by the acceleration of the Master-axis currently used for the point-to-
point movement. This means that it is also possible to modify this ramp by setting a new acceleration value
using the instruction SETACC.
This instruction can generate following system error:
· "4101: Inconsistent management of axis AxisName", in the event that the axis declared is not a slave

axis.

Generic Parameters

DYNLIMIT

Syntax
DYNLIMIT axis, status

Arguments
axis name of axis device
status predefined constant. Allowed values:

ON enabling dynamic controls of the axis limits
OFF disabling dynamic controls of the axis limits

Description
It enables or disables the dynamic test of exceeded axis limit.
What distinguishes the dynamic test of exceeded axis limit from the static test of exceeded axis limit is that
the first one verifies at each real-time that the axis exceeds its limits, according to its current speed rate
and to its maximum deceleration. The test of static type, instead, verifies instant by instant that the current
arrival position of each axis is located within the positive or negative set axis limits. Furthermore, before
the beginning of the move, the test of static type verifies if the positions given by the movement
instructions exceed the set limits.
Before a DYNLIMIT instruction SETLIMPOS and SETLINMNEG instructions must be set, in order to define the
new limits.

Example
Check of the axes limits according to both typologies of static and dynamic test, with axes on the same
movement directrix.

Static test.
In a generic movement the Axis X1 cannot exceed the initial positive limit given by the Axis X2 position.
Axes limit check generates a system error no. 4108 "Axis X1: final position exceeding the software limit".

Dynamic test
It verifies in a generic movement that the instantaneous X1 position is located, with a proper sign and
according to the movement direction of the axis, within the axis limits decreased of the minimum stop
space of the same axis. The minimum stop space is calculated according to the instantaneous speed rate
and to the deceleration set into the configuration of the point-to-point movement. Furthermore, this test
does not verify before the beginning of the movement, if the positions given by the movement instructions
exceed the set limits.

Albatros154

Numeric control

ENABLESTARTCONTROL

Syntax
ENABLESTARTCONTROL axis, [timeout]

Arguments
axis name of axis device
timeout integer variable or constant. It is the wait time limit, expressed in real-time.

Description
This instruction allows for timeout to be enabled and selected to control the non-start up or sudden stop of
the axis.
If the axis does not move by at least 2 steps in 200 real-time when the movement is executed, system
error n. 3, "Servoerror", is generated.
If the timeout parameter is set to zero, the control is disabled. The instruction is not enabled if the
theoretical speed is slower than two steps in 200 real-times or if the movement ends in less than 200 real-
times.

Example
; axis starting timeout equal to 10 real-times
ENABLESTARTCONTROL x, 10

NOTCHFILTER

Syntax
NOTCHFILTER axis, [value]

Arguments
axis name of axis device
value constant or variable. Frequency value [Hz]. Valid values are in the range 0

to 500.

Description
Sets the notch filter's cut-off frequency for the axis specified. If value equals 0, the filter is disabled. If the
value parameter is omitted, the value set in configuration will be used.

Example

; frequency cut-off 97 Hz
NOTCHFILTER X, 97

RESLIMNEG

Syntax
RESLIMNEG axis

Arguments
axis name of axis device

Description
It disables the test on the negative limit of the indicated axis.

GPL Language 155

Numeric control

These instructions are usually used in homing routines to search for home switches, allowing the axes to
exceed the set configuration values.
See also instructions SETLIMNEG, SETLIMPOS, RESLIMPOS.

Example
Axis Homing routine

RESLIMPOS

Syntax
RESLIMPOS axis

Arguments
axis name of axis device

Description
It disables the test on the positive limit of the indicated axis.
These instructions are usually used in homing routines to search for home switches, allowing the axes to
exceed the set configuration values.
See also instructions RESLIMNEG, SETLIMPOS, SETLIMNEG.

Example
Axis Homing routine

SETADJUST

Syntax
SETADJUST axis, status [value]

Arguments
axis name of axis device
status predefined constant. Possible values are:

· ON to enable
· OFF to disable

[value] float variable or constant. Voltage [Volt]

Description
It enables or disables, on the specified axis, the automatic calculation of offset recovery, that is, the
adjust.
The adjust allows to compensate slight position offsets at the end of axis movement. It is normally enabled.

It can be convenient to disable the adjust for axes moved by motors with a high position hysteresis which
would not benefit by using this control function.

When the adjust is reactivated after having been disabled, the control does not consider the value
calculated previously, so the instruction can also be used to delete the accumulated adjust of an axis
without having to restart the control.

When the third parameter is present, offset is set on the indicated value, regardless of the activation or
deactivation of the automatic adjust. The use of this instruction allows to compensate via software a speed
reference offset instead of compensating it on drive, even if the compensation on drive is to be preferred.
The instruction can only be used with analog controlled axes.

SETBACKLASH

Syntax
SETBACKLASH axis, value

Arguments
axis name of the axis device
value variable or float constant. Backlash value

Description
This instruction allows to reduce or eliminate the effects of mechanical slackness on the axis trajectory.
The value of the game that can be set should be between 0.0 and 3.0. This value is independent of the
unit of measure choice. Special situations occur in the following cases:
· if the axis is disabled, backlash recovery function is not applied, even if requested.
· In case of vertical axis, given the particular configuration, it does not occur any backlash.

Albatros156

Numeric control

· In case of axis with a load of great inertia, there may be a partial or at times a total load compensation.
As a matter of fact, due to the mass of the load, the motion of the axes could stop later than the engine.
The resulting positioning of the reduction gear teeth as regards the teeth positioning of the driving gear
can reduce or even cancel the backlash.

· Visualization of the real quotes and encoder of the axis, sampled by the oscilloscope on the points, where
the backlash recovery is activated (movement reversal), shows a pick equivalent to the backlash value
itself.

The instruction generates a system error, in case of use:
· on stepper, not controlled by TRS-AX remotes, counting, virtual axes
· on stepper axes, controlled by TRS-AX remotes with simulated encoder

Example
; Function whose backlash recovery is disabled (red line in the drawing)
SETQUOTE X, 0
SETQUOTE y, 0
SETVELI X, 1.0
CIRCLE X,Y,cw,100,90
WAITSTILL X,Y

; Function whose backlash recovery is enabled
; (black line in the drawing)
SETQUOTE X, 0
SETQUOTE y, 0
SETVELI X, 1.0
SETBACKLASH X, 1.9
SETBACKLASH y, 1.8
CIRCLE X,Y,cw,100,90
WAITSTILL X,Y

Carrying out the two functions generates two different traces.
The first figure shows the interpolation on two axes, that present a backlash in the mated engine-reduction
gear.

The second figure represents the same interpolation, but containing the instruction of backlash recovery.

GPL Language 157

Numeric control

SETBIGWINFACTOR

Syntax
SETBIGWINFACTOR axis, value

Arguments
axis name of axis device
value double constant or variable. Multiplication factor for the calculation of the

higher threshold

Description
This instruction allows to modify the multiplication factor for the calculation of the higher threshold on the
axis requested. To calculate the higher threshold, we need to multiply the variable value by the parameter
defined in the axes configuration of the position arrival threshold. The value that can be set should be
included between 1 and 257 first and final value excluded. Default value is 4.0.

SETDEADBAND

Syntax
SETDEADBAND Asse,VMinPos,VMinNeg,VThrePos,VThreNeg

Arguments
axis name of axis device
VMinPos float variable or constant. Minimum positive voltage [Volt]
VMinNeg float variable or constant. Minimum negative voltage [Volt]
VThrePos float variable or constant. Positive threshold [Volt]
VThreNeg float variable or constant. Negative threshold [Volt]

Description
It sets the minimum voltage for the indicated axis. The minimum (positive/negative) voltage values are
added to the theoretical reference voltage (positive/negative) , if this exceeds the (positive/negative)
threshold value selected. If the theoretical reference voltage falls within threshold values, the actual
reference voltage is forced to zero. Minimum voltage management can be disabled, setting all values to
zero. The threshold values must always be below or equal to relative minimum voltage values.
When the system starts up, minimum voltage management is disabled.

Albatros158

Numeric control

SETENCLIMIT

Syntax
SETENCLIMIT axis [, value]

Arguments
axis name of axis device
value double constant or variable

Description
It changes the incorrect encoder connection limit. This parameter is expressed in the axis UOM. Allowed
values must fall within a range equal to 128 – 16384 encoder steps. If the parameter is omitted, the
default value equal to 1024 steps is restored.
For example, allowed values for an axis with a 1000 impulse/mm resolution will range from 0.128 to
16.384 mm.

If the value parameter is set to zero, the control of the incorrect encoder connection limit is disabled.

Example

; set a incorrect encoder connection limit equal to 3.5
SETENCLIMIT X, 3.5

SETINDEXEN

Syntax
SETINDEXEN axis, status

Arguments
axis name of axis device
status default constant. Allowed values:

ON zero pulse status enabled
OFF zero phases pulse disabled

Description
It enables or disables coordinate zeroing on the indicated axis at the zero pulse.
To execute this instruction, the axis must be a metering-type axis.

SETINTEGTIME

Syntax
SETINTEGTIME axis [, value]

Arguments
axis name of axis device
value integer constant or variable

Description
It sets the number of link error samples used to calculate the integral component. Values are valid from 1
to 200. This parameter may be changed suddenly, but this may generate steps on the axis speed
reference. It is advisable to change this parameter when the axes are stationary and disabled, or preferably
free.

SETIRMPP

Syntax
SETIRMPP axis, speed

Arguments
axis name of axis device
speed float constant or float variable. Ramp start speed

Description
It assigns the ramp start speed value to the axis. It is the minimum speed of a stepping motor.
This instruction is used for axes moved by stepping motors.

GPL Language 159

Numeric control

SETLIMNEG

Syntax
SETLIMNEG axis [, position]

Arguments
axis name of axis device
position constant or variable. Negative limit

Description
It sets the axis negative limit position.
If position is omitted, the configuration negative limit is set.
These instructions are usually used in homing routines to look for home switches, allowing the axes to
exceed set configuration values.
See also instructions RESLIMNEG, SETLIMPOS, RESLIMPOS.

Example
Axis Homing routine

SETLIMPOS

Syntax
SETLIMPOS axis [, position]

Arguments
axis name of axis device
position constant or variable. Positive limit

Description
It sets the positive limit position for the axis.
If position is omitted, the configuration positive limit is set.
These instructions are usually used in homing routines to look for home switches, allowing the axes to
exceed set configuration values.
See also instructions RESLIMNEG, RESLIMPOS, SETLIMNEG.

Example
Axis Homing routine

SETMAXER

Syntax
SETMAXER axis, value [, direction]

Arguments
axis name of axis device
value constant or variable. Maximum loop error
direction default constant. Axis direction

Possible values are:
POSITIVE
NEGATIVE

Description
It assigns to the axis the maximum chase value admitted by control, in the indicated direction, before
generating a "servoerror".
If direction is omitted, the maximum tracking value is set for both directions.

SETMAXERNEG

Syntax
SETMAXERNEG axis, backlog , advance

Arguments
axis name of axis device
backlog constant or variable. Maximum backlog error
advance constant or variable. Maximum advance error

Description

Albatros160

Numeric control

Sets the axis maximum values for the loop (backlog) and advance (advance) loop errors allowed by
control, in negative direction, before generating "servoerror".
· Backlog: is the maximum tolerated loop value in the case of static test of the servoerror or in the case

of dynamic servoerror test it is the value that, added to the theoretical error proportional to the speed,
determines the maximum tolerated loop value.

· Advance: is the maximum loop value tolerated during the inversion of movement from negative
movement to positive movement.

Loop error is computed as the difference between theoretical coordinate (where the axis should be
positioned) and real coordinate. When the axis moves in negative direction, a negative value of loop error
indicates that the axis has a backlog, while a positive value of loop error indicates that the axis is in
advance. If this instruction is not used, the maximum loop error values set in axis configuration will be
assumed as default by the numerical control; in this case, the maximum advance error will be equal to 1/4
of the maximum backlog error.

Example

SETMAXERNEG Axes.X, 10, 5

; Maximum axis delay is 10mm, maximum advance 5mm

SETMAXERPOS

Syntax
SETMAXERPOS axis, backlog , advance

Arguments
axis name of axis device
backlog constant or variable. Maximum backlog error
advance constant or variable. Maximum advance error

Description
Sets the axis maximum values for the loop (backlog) and advance (advance) loop errors allowed by
control, in negative direction, before generating "servoerror".
· Backlog: is the maximum tolerated loop value in the case of static test of the servoerror or in the case

of dynamic servoerror test it is the value that, added to the theoretical error proportional to the speed,
determines the maximum tolerated loop value.

· Advance: is the maximum loop value tolerated during the inversion of movement from negative
movement to positive movement.

Loop error is computed as the difference between theoretical coordinate (where the axis should be
positioned) and real coordinate. When the axis moves in positive direction, a positive value of loop error
indicates that the axis has a backlog, while a negative value of loop error indicates that the axis is in
advance. If this instruction is not used, the maximum loop error values set in axis configuration will be
assumed as default by the numerical control; in this case, the maximum advance error will be equal to 1/4
of the maximum backlog error.

Example

SETMAXERPOS Axes.X, 10, 5

; Maximum axis delay is 10mm, maximum advance 5mm

GPL Language 161

Numeric control

SETMAXERTYPE

Syntax
SETMAXERTYPE axis, type

Arguments
axis name of axis device
type integer constant. Allowed values:

0 = sets servoerror to threshold value (default value)
1 = sets dynamic servoerror

Description
This instruction allows the type of servoerror test to be set. Conventional servoerror management sets a
pair of limits (positive and negative), which are constant as axis speed changes. This type of management
sizes the limits depending on the axis's maximum speed, i.e. it sets a limit so that the error in normal
operating conditions is not set off. However at low speeds, the link error generally has far lower values than
the set limit, and this delays error condition identification.

Window management of the servoerror is based on calculating the theoretical link error. The positive and
negative servoerror limits are calculated as a function of this, adding and subtracting a threshold value
from them. If the actual link error exceeds this threshold, a servoerror is generated.

Nota
If you set the test on dynamic servoerror it is generally necessary to amend the limit values of positive
servoerror and negative servoerror limit set in axis configuration for the servoerror threshold. This is
because the above values are used as initial values for the calculation of the loop-error.

Threshold ServoError Limit:

Dynamic ServoError Limit:

Albatros162

Numeric control

SETPHASESINV

Syntax
SETPHASESINV axis, status

Arguments
axis name of axis device
status default constant. Allowed values:

ON phase inversion stage enabled
OFF phase inversion status disabled

Description
It enables or disables phases inversion on the indicated axis, allowing any encoder phase cabling inversion
to be offset using software. If used with the reference inversion, the axis direction can be inverted (if
cabling is correct).
To execute this instruction, the axis must be in a FREE status.

SETREFINV

Syntax
SETREFINV axis, status

Arguments
axis name of axis device
status default constant. Allowed values:

ON reference inversion status enabled
OFF reference inversion status disabled

Description
It enables or disables reference inversion on the indicated axis. If used with phases inversion, the axis
direction can be inverted (if cabling is correct).
To execute this instruction, the axis must be in a FREE status.
See also SETPHASESINV.

SETRESOLUTION

Syntax
SETRESOLUTION axis [, value]

Arguments
axis axis device name
value constant or double variable

Description
Changes the resolution of the specified axis. If value is left out, the resolution value, that was set in the
configuration, is used. Resolution value can only be edited if the axis is stationary (axis status=coordinate),
otherwise the system error no. 4101 "Inconsistent management of axis" is generated.

Counter10.3.5

DECOUNTER

Syntax
DECOUNTER countername [, value]

Arguments
countername name of counter device
value constant or variable or counter device

Description
It decreases the counter countername by the specified value. If no value is set, it assumes value 1. See
also instructions SETCOUNTER and INCOUNTER.

GPL Language 163

Numeric control

INCOUNTER

Syntax
INCOUNTER countername [, value]

Arguments
countername name of counter device
value constant or variable or counter device

Description
It increases the counter counter name by the specified value. If no value is set, it assumes value 1. See
also instructions SETCOUNTER and DECOUNTER.

SETCOUNTER

Syntax
SETCOUNTER countername, value

Arguments
countername name of counter device
value constant or variable or counter device

Description
It sets the counter countername to the specified value. See also INCOUNTER and DECOUNTER.

Timer10.3.6

HOLDTIMER

Syntax
HOLDTIMER timername

Arguments
timername name of timer device

Description
It blocks the updating of the timer timername. See also STARTTIMER and SETTIMER.

SETTIMER

Syntax
SETTIMER timername, time

Arguments
timername name of timer device
time constant or variable or timer device

Description
It sets the timername to the specified time (in seconds).
Only positive values (higher than 0) are admitted. Maximum precision of timers is 4 ms. See also
STARTTIMER and HOLDTIMER.

Example
; The Function sets a timer
; I set the timer TimeOut
; at a value of 20 seconds
SETTIMER Timeout,20
; the timer starts in decreasing mode. When it gets to 0, it stops

STARTTIMER Timeout,DOWN

STARTTIMER

Syntax
STARTTIMER timername [, direction]

Arguments

Albatros164

Numeric control

timername name of timer device
direction default constant. Possible values are:

UP increasing
DOWN decreasing

Description
It starts the timername timer on the mode specified by direction, if specified.
If direction is omitted, it is automatically set on DOWN mode.
When a timer (started in decrescent mode) reaches zero it automatically stops. See also HOLDTIMER and
SETTIMER.

Variables, Vectors and Matrixes10.3.7

CLEAR

Syntax
CLEAR varname or vector or matrix[rowmatrix]

Arguments
varname name of variable
vector name of vector
matrix name of matrix
matrixrow constant or variable or counter. Matrix row

Description
It clears to 0 the part of memory reserved for variables (varname), vectors (vector), matrixes (matrix)
or the elements of a matrix row.

FIND

Syntax
FIND matrix, column, min_limit, max_limit, value, variable
FIND vector, min_limit, max_limit, value, variable

Arguments
matrix name of the matrix. The matrix in which to search
vector name of the vector. The vector in which to search
column constant or integer variable or countername. Number of the matrix column

in which to search
min_limit constant or variable. Minimum index of the vector or matrix from which

search starts
max_limit constant or variable. Maximum index of the vector or matrix where the

search ends
value constant or variable. Value to be found
variable variable. Result of the search

Description
It carries out a sequential search of a value inside a vector or the column of a matrix and puts the index
of the element in variable.
If the value is not found, variable will get value -1.

FINDB

Syntax
FINDB matrix, column, min_limit, max_limit, value, variable
FINDB vector, min_limit, max_limit, value, variable

Arguments
matrix name of the matrix. The matrix in which to search.
vector name of the vector. The vector in which to search.
column constant or integer variable or countername. Number of the matrix column

in which to search
min_limit constant or variable. Minimum index of the vector or matrix from which

search starts
max_limit constant or variable. Maximum index of the vector or matrix where the

search ends
value constant or variable. Value to be found
variable variable. Result of the search

GPL Language 165

Numeric control

Description
It performs a rapid search for a value inside a vector or the column of the matrix and puts the index of
the element in variable. For the search to be successful, the vector or the column of the matrix must
have been previously sorted with the SORT instruction according to an increasing order.
If the value is not found, variable will assume value -1.

LASTELEM

Syntax
LASTELEM vector, vectelements
LASTELEM matrix, matrows

Arguments
matrix name of matrix
vector name of vector
vectelements variable. Number of elements of the vector
matrows variable. Number of rows of the matrix

Description
It writes the number of elements of the vector in the vectelements variable, or the number of rows of
the matrix in the matrows variable.

LOCAL

Syntax
LOCAL varname AS type
LOCAL vector[n° elements] AS type
LOCAL matrix[n° rows] AS type, type, type, etc.
LOCAL matrix[n° rows] AS type:colname1, type:colname2, type:colname3,

etc.

Arguments
varname name of variable
[n° elements] variable or constant (compulsory argument). Number of elements of the

vector
[n° rows] constant or variable (compulsory argument). Number of rows of the matrix
type char, integer (32 bit), float (32 bit), double (64 bit), string, timer
colname1…colnameN name of column. Label.

Description
Declaration of a local variable. Only the PARAM instruction, which defines the parameters of the function,
can appear before this instruction.
For further information about local variables see Local variables.

MOVEMAT

Syntax
MOVEMAT matsourcename, mataddrname

MOVEMAT matsourcename[row source], mataddrname[row addr]

MOVEMAT matsourcename[row source], mataddrname[row addr],num row

Arguments
matsourcename name of source matrix
row source start rows number for the copy of the source matrix (compulsory argument)
mataddrname name of addressee matrix
rowaddr start rows number for the copy into the destination matrix (compulsory

argument)
numrow rows number to copy

Description
It copies the content of the entire matrix matsourcename in the matrix mataddrname or one or more
rows num row of the matrix row matsourcename[rowsource] in the matrix row
mataddrname[rowaddr]. If the parameter numrow is not specified one only row is copied. The two
matrixes must have the same type of structure (same number of columns and same type of data in each
column) and when entire matrix is copied the same number of rows. It is possible to move rows of data
within the same matrix.

Example

Albatros166

Numeric control

Movemat Mx1, Mx2 ; it copies matrix Mx1 to Mx2

; it copies row 10 of matrix Mx1 to row 3 of Mx2
Movemat Mx1[10], Mx2[3]

; it copies row 1 of matrix Mx1 to row 7 of Mx1
Movemat Mx1[1], Mx1[7]
; it copies 6 rows starting from row 2 of matrix Mx1 to matrix
; Mx2, starting from row 8
Movemat Mx1[2], Mx2[8],6

; it copies 4 rows starting from row 2
; of matrix Mx1 in the same matrix
; Mx1, starting from row 10
Movemat Mx1[2], Mx1[10],4

PARAM

Syntax
[PARAM] varname AS type
[PARAM] vector[n° elements] AS type
[PARAM] matrix[n° rows] AS type, type, type, etc.
[PARAM] matrix[n° rows] AS type: alias, type:alias, type:alias, etc.

Arguments
varname name of variable
[n° elements] constant (obligatory argument)
[n° rows] constant (obligatory argument)
type char, integer (32 bit), float (32 bit), double (64 bit), string

Description
The parameters behave like the local variables (see LOCAL), but are activated by whoever calls the
function. The syntax for parameter declarations is the same used for local variables.
Parameters may be by value or by reference depending on their kind. See "Functions".
They must be declared before any other instruction.
For further information see Local variables.

SETVAL

Syntax
SETVAL value, varname

Arguments
value constant or variable or devicename
varname variable or devicename

Description
It assigns the specified value to the varname variable or to the n-th vector or matrix element.

SORT

Syntax
SORT matrix, column [, order], min_limit, max_ limit
SORT vector [,order], min_limit, max_limit

Arguments
matrix name of the matrix
vector name of the vector
column constant or integer variable or countername. Matrix column number
order default constant. It indicates order mode

Possible values are:
UP increasing order
DOWN decreasing order

min_limit constant or variable. Minimum index of the vector or matrix from which
sorting starts

GPL Language 167

Numeric control

max_limit constant or variable. Maximum indec of the vector or matric where sorting
ends

Description
It sorts the values inside a vector or a matrix, according to the order specified in the order constant.
In the case of a matrix, the order of the rows is dictated by the increasing (UP) or decreasing (DOWN)
disposition of the values in the selected column.
If the order argument is omitted, the UP mode is automatically selected.

Minimum Index

Maximum Index

Matrix

Strings10.3.8

ADDSTRING

Syntax
ADDSTRING stringname1, stringname2, stringname3

Arguments
stringname1 string constant or string variable. Source string
stringname2 string constant or string variable. String to be added
stringname3 string variable. Result string

Description
Chain of two strings.
It adds the string identified by stringname2 to the string identified by stringname1 and puts the result in
the string identified by stringname3.
The maximum dimension of a string is 255 characters+ the terminator, so that the result of the chaining of
the first two strings can not exceed this limit.

Example
Operations on strings

CONTROLCHAR

Syntax
CONTROLCHAR value, stringname

Arguments
value char or integer constant or char or integer variable. Value to be converted
stringname string variable. Result string

Description
It converts the value identified by value in ASCII characters and puts the result in the stringname string
(which corresponds to the first byte).
The former content of the string is lost. This instruction is useful if control or unprintable characters(such
as the character NULL = 0x00) have to be inserted in a string.
It accepts strings of at least 2 characters: 1 character + the terminator. If the string is of only one array[1]
as char character, the "Incorrect macro argument" system error is signalled

Example
Operations on strings

Albatros168

Numeric control

LEFT

Syntax
LEFT sourcestringname, numcharacters, leftstringname

Arguments
sourcestringname string constant or string variable. Source string
numcharacters constant or variable. Number of characters to be copied
leftstringname string variable. Destination string

Description
It copies the first numcharacters of the sourcestringname in the leftstringname.
In practice, it fetches the left side of the source string. See also instructions MID and RIGHT.

Example
Operations on strings

LEN

Syntax
LEN stringname, variable

Arguments
stringname string variable. String
variable variable

Description
It calculates the number of characters contained in the stringname string (excluding the terminator) and
puts the result in variable.

Example
Operations on strings

MID

Syntax
MID sourcestringname, firstchar [, numcharacters], rightstringname

Arguments
sourcestringname string constant or string variable. Source string
numcharacters constant or variable. Number of characters to be copied
rightstringname string variable. Destination string
firstchar constant or variable. Position of start copy character

Description
It extracts a number of characters identified by numcharacters, starting from firstchar, from the string
identified by sourcestringname.
The extracted substring is set in the string identified by namerightstring.
If numcharacters is omitted, the sourcestring is copied from the firstchar position, to the end of it. In
practice it fetches the middle part of the source string.
See also instructions LEFT and RIGHT.

Example
Operations on strings

RIGHT

Syntax
RIGHT sourcestringname, numcharacters, rightstringname

Arguments
sourcestringname string constant or string variable. Source string
numcharacters constant or variable. Number of characters to be copied
rightstringname string variable. Destination string

Description
It copies the last numcharacters of the sourcestringname string in the rightstringname string.
In practice, it fetches the right side of the source string. See also instructions LEFT and MID.

GPL Language 169

Numeric control

Example
Operations on strings

SEARCH

Syntax
SEARCH stringname, character, variable

Arguments
stringname string variable
character char constant or string constant or string variable. Character or string to be

found
variable variable

Description
It looks for the position of the ASCII character identified by character (which may also be a string) within
the stringname string and puts the index of the result in variable.
If character is not found, variable will contain the value -1.

Example
Operations on strings

SETSTRING

Syntax
SETSTRING "value", stringname

Arguments
value string constant or string variable (in inverted commas)
stringname destination string

Description
It copies a string.
It copies the ASCII characters contained in the string identified by "value" in the string identified by
stringname.
To insert unprintable characters in a string see instruction CONTROLCHAR.

Example
Operations on strings

STR

Syntax
STR value, stringname

Arguments
value constant or variable. Source value to be converted
stringname string variable. Destination string

Description
It converts the value in ASCII characters and puts the result in the stringname string. It can be used to
change an integer variable in a string. For example the number 10 becomes the string "10".

Example
Operations on strings

VAL

Syntax
VAL stringname, result

Arguments
stringname string variable. String to be converted
result variable. Transformed string

Description

Albatros170

Numeric control

It transforms the content of the stringname string in a decimal number and puts the result in the
variable.
For example, the "123" string becomes 123.

Example
Operations on strings

Communications10.3.9

CLEARRECEIVE

Syntax
CLEARRECEIVE

Arguments
No argument

Description
It empties the list of executed but not satisfied RECEIVES.

COMCLEARRXBUFFER

Syntax
COMCLEARRXBUFFER COMnumber

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.

Description
The instruction empties the receive buffer of the serial COMnumber. Any data contained is deleted.

COMCLOSE

Syntax
COMCLOSE COMnumber

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.

Description
It closes the COMnumber serial line opened by a COMOPEN. It is also necessary to close the serial line
when a task that has opened a serial port is closed for any reason.

COMGETERROR

Syntax
COMGETERROR COMnumber, variable

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.
variable integer variable. The result of the last operation executed on the serial

Description
The instruction reads the return code of the last serial communication instruction called on the
COMnumber port. Through this instruction it can learn whether a read or write task was successful and, if
not, it can find the returned error code.
The error codes are listed below.

Normal return 0
Transmission buffer full 2
Device already open 3
Port not valid or not configured 6
I/O port enabling failed 7
Connection to interrupt not possible 8

GPL Language 171

Numeric control

Serial port (com) not yet open 9
The serial device (com) is occupied 12
Connection to RTX not possible 14

COMGETRXCOUNT

Syntax
COMGETRXCOUNT COMnumber, numchar

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.
numchar number of characters in buffer

Description
The instruction returns the number of characters present in the reception buffer. It allows to know if the
serial port has received any characters.

COMOPEN

Syntax
COMOPEN COMnumber, baudrate, wordsize,stopbits,parity

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.
baudrate communication baudrate. Possible values are: 2400, 4800, 9600, 19200,

38400, 57600, 115200
wordsize size of data words. Possible values are. 5, 6, 7, 8.
stopbits stop bits. Possible values are: 1, 2
parity predefined constant. Parity. Possible values are: NOPARITY, ODDPARITY

and EVENPARITY

Description
It opens a serial line. This instruction is executed before any other instruction for serial line management. If
any other instruction concerning the same serial line is executed before COMOPEN, a system error is
generated. The transmitted parameters must be included among the above mentioned values.
The serial line communication channel is bound to the task wich has executed the COMOPEN instruction. If
task ends, the communication channel is automatically closed.
See also COMCLOSE, COMREAD, COMWRITE, COMREADSTRING, COMWRITESTRING.

Note
The number of the serial available lines depends on the hardware environment of the numeric control (see
documentation). In the RTX environment only COM1 and COM2 are available.

COMREAD

Syntax
COMREAD COMnumber, buffer, numchartoread, numcharread [,timeout]

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from COM1

to COM8.
buffer vector of char. It is the vector where the read characters are stored
numchartoread number of characters which should be read on the serial line
numcharread number of characters really read
timeout wait timeout (in seconds)

Description
The instruction reads certain characters of the COMnumber serial. The read characters are memorised in
the variable buffer. The field numchartoread indicates the number of characters that the instruction must
read. If the serial reception buffer contains less characters and the timeout parameter is not specified, the
instruction will end immediately, specifying the number of characters it has really read in the parameter
numcharread. If the parameter timeout is specified, the instruction will have to wait a maximum of
seconds indicated in the variable, for other characters to arrive. If timeout runs out, the instruction will
exit, still specifying in numcharread the number of characters really copied in buffer.

Albatros172

Numeric control

COMREADSTRING

Syntax
COMREADSTRING COMnumber, buffer, numcharread [,terminator [,timeout]]

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from COM1

to COM8
buffer vector of char. The vector where the data is deposited
numcharread number of characters really read
terminator transmission termination character
timeout wait timeout (in seconds)

Description
The instruction reads certain characters of the COMnumber serial. Unlike the COMREAD it reads the serial
until it finds the terminator character. The read characters are memorised in the variable buffer. This
variable must be a char type vector. The numcharread field indicates the number of characters which the
instruction has really read in the serial line and copied in the buffer. The parameter terminator indicates
the character that will function as transmission terminator. In practice the instruction will have to read the
characters of the serial until it reaches a character like the one specified in this parameter. This parameter
is optional. If no other character is set, the terminator character is zero. The zero is not copied in the buffer
as it is recognised as a parameter, while any other termination character specified in the instruction will be
copied in the buffer. The timeout is another parameter that indicates how many seconds the instruction
will have to wait for more characters if it has emptied the reception buffer without finding any termination
character. If the timeout parameter is not specified, the instruction will terminate as soon as the reception
buffer is emptied.

COMWRITE

Syntax
COMWRITE COMnumber, buffer, towrite

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from COM1

to COM8
buffer char vector. The vector containing the data to be written
towrite number of characters to be written

Description
The instruction writes the characters present in the buffer variable in the COMnumber serial line. The
towrite parameter specifies the number of characters to be written.

COMWRITESTRING

Syntax
COMWRITESTRING COMnumber, buffer [,terminator]

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from COM1

to COM8.
buffer char vector. The vector containing the data to be written
terminator transmission termination character

Description
The instruction writes the characters contained in the buffer variable on the COMnumber serial line. Unlike
the COMWRITE it writes on the serial until it finds the character terminator. The parameter terminator is
optional. If it is not specified, the instruction will transmit until it finds a zero character. The zero is not
transmitted, while any other specified control character is.

RECEIVE

Syntax
RECEIVE [source,] identifier, flags [, container]

Arguments
source string constant
identifier string constant
flags integer constant
container name of device or variable (numeric or string)

GPL Language 173

Numeric control

Description
This instruction is used, together with SEND, to exchange information between the modules of the plant
and the supervisor PC. SEND is used to send information, RECEIVE to ask for information. Information can
be requested from Albatros or an external program (Server OLE Automation). In the second case the
request is still received by Albatros who will then send it to the external program.

The parameter source is a string that allows to specify where the request for information is directed to.
There are three classes of recipients:
· sources beginning with the "@" character (see list further on). The source is really Albatros, or better,

one of its functions.
· sources not beginning with the "@" character. They are considered as Server OLE, as soon as Albatros

receives an information request addressed to them, it will try to send them in execution and then to pass
on the information request received from the module.

· unspecified source (the parameter is actually optional). In this case the information is read in a table
kept by Albatros. If the information is not included in the table the request remains open and will be
satisfied as soon as the information is available (provided by another module or an external program).

The parameter identifier is the name of the requested information, and cannot be omitted. It takes on
different meanings according to the source:
· if Albatros is the source, the identifier will be a command related to the accessed function
· if a Server OLE is the source, it will be a property of the OLE object requested.
· if the source is not specified it will be the label that identifies the information in the Albatros table.

The flags parameter allows specifying how the requested information is to be treated by Albatros. The
acceptable values and their effects are the following:

value command description

$0008H CancelAfter The information is deleted after being read.

$0800H UpdateFlags Modifies the status of the information (already read/to be read) without
modifying the data

$8000H Delete Deletes the information

The parameter container is the variable (or device) in which the requested information will be stored. This
may be omitted, in which case the request is the notification of an event (it can be used to synchronise the
execution of the GPL code on various modules).

List of sources managed by Albatros and their commands:

"@List"
Makes possible to control the commands Simulation and Setpoint.
The following commands are allowed (Parameter identifier):
· Sim,0,container: it requires the Simulation button status, that is written on the Simulazione flag

switch. The return variable container has a 1 value, if any error did not occur, otherwise it has a
value 0.

· Setp,0,container: requires Setpoint button status, that is written on CmdSetP flag switch. The return
variable container has a 1 value, if any error did not occur, otherwise it has a 0 value.

· Esc,0,container: requires Setpoint button status, that is written on Escluso flag switch. The return
variable container has a 1 value, if any error did not occur, otherwise it has a value 0.

"@Environ"
It allows receiving information about the status of the system: user's access level, modules connected
to the supervisor etc. The requested information is stored in the parameter container. The acceptable
values for the parameter identifier and the relative answers are:
· "AccessLevel" access level to the system 0=user, 1=service, 2=builder, 3=tpa
· "MaskConfModules" mask of configured modules
· "MaskActiveModules" mask of connected modules
· "CurrentModule" module sending the request
· "mod:NamePC" name of PC corresponding to module "mod". (mod must be between 0 and

15)
· "LocalDateTime"

The container parameter will receive the date and the time of the PC in a format relating to its type:
· char: number of the day of week
· integer: number of seconds from 1/1/1970
· float: number of days and fractions of a day from 1/1/1900
· double: number of days and fractions of a day from 1/1/1900
· string: text "AAAA/MM/GG hh:mm:ss"

Albatros174

Numeric control

The masks of the connected and configured modules are bit masks. The lowest weight bit is module 0.
The bit of each module is 1 if the module is connected or configured. In case of "NamePC" the module
number is not compulsory; if omitted, the number is assumed of the module which instanced the
request.

"@Syn"
Communication between GPL and the synoptic view display. It allows to open and close the synoptic
views with GPL control and request information from a synoptic cell. The following commands are
possible (parameter identifier):
· "Open:filename" opening of the synoptic filename.xsyn
· "Close:filename" closure of the synoptic filename.xsyn
· "cellname" cell from which the requested information is read
It is possible to get information about the axes move window according to the technical data, that has
been defined also for the parameter source "@Devices", as below.

"@FileName"
stores an association between a constant string and a file name, which can be made up with string
variables. Since Albatros has received the communication of the association it replaces all the following
file names with the name received by means of this instruction. The parameter identifier is the name
of the file. The name of the file is a variable string. If in the parameter identifier the complete path in
which to store the file is not specified, Albatros considers the one defined in TPA.ini into the section
[tpa] at the item dirreport. The value of the parameter identifier is stored in TPA.ini in the section
[GPLFileName] at the item Log, so that it can be used again also in the Albatros executions, that follow.
To cancel the association you need to set an empty string as parameter identifier. The association,
which is defined in this way, can be used for each module.

"@FileDelete"
Delete a file. The identifier parameter is the name of the file which will be deleted (complete path). If
in the parameter identifier the complete path in which to store the file is not specified, Albatros
considers that defined in tpa.ini in the section [tpa] at the item dirreport. The file name can be defined
according to the rules, that have been described in the parameter source @FileRead. The container
parameter contains the value:
· 1 if the file has been deleted
· 0 if not

"@FileRead"
It reads the file content. The parameter indentifier is the name of the file that will be read (complete
path). If in the parameter identifier the complete path in which to store the file is not specified,
Albatros considers that defined in tpa.ini in the section [tpa] at the item dirreport. If the identifier
starts and finishes with a %-symbol, the inside string is searched in tpa.ini into the section [tpa] and
used as a file name. Inside the name can be inserted some symbols that will be substituted during the
instruction execution:

· %n module number that execute RECEIVE instruction
· %h current time (format 00-23)
· %d current day (format 01-31)
· %m current month (format 01-12)
· %y current year (four numbers format)

If the parameter container is defined as a char variable, it will contain a byte read by the file, if it is
define as a string, it will contain an entire string of the file test, if defined as a file integer, it will
contain the missing number of bytes to reach the end of the file (0= file end).
To place the pointer at the beginning of the file itself, the parameter container should be omitted.

"@FileExist"
It checks the existence of a file. The parameter identifier is the name of the file that will be read
(complete path). If in the parameter identifier the complete path in which to store the file is not
specified, Albatros considers that defined in tpa.ini in the section [tpa] at the item dirreport. The name
of the file can be defined according to the rules that have been described in the parameter source
@FileRead. The parameter container contains the value:
· different from 0, if the file exists
· 0, if the file does not exist

"@FileLastWrite"
Gets the date of the last modification made to a file. The identifier parameter is the name of the file
(complete path) If in the identifier parameter the full path in which to store the file is not specified,
Albatros considers the path defined in tpa.ini, under [tpa], then dirreport. The name of the file can be
defined according to the rules described at the @FileRead source parameter. The container
parameter will contain the date of the last modification to the file a format that is related to the type of
the parameter:
· char: number of the day of week
· integer: number of seconds since January 1st,1970

GPL Language 175

Numeric control

· float: number of days and fractions of a days since January 1st, 1900
· double: number of days and fractions of a day since January 1st, 1900
· string: text in the format "AAAA/MM/GG hh:mm:ss"

"@FileInfo"
It read some info from a file. The parameter identifier must be expressed in the format
“property:filename”, where property stands for the name of the property to be read and filename is
the name of the file. The name of the file can be set through “Name”. The parameter container will
contain the data read from the file.
List of properties:
· “version:”: it returns in container an integer data. The four numbers identifying the version are in

the 4 bytes of the container variable. Should an error occur, the value of the container variable is 0.
· “size:”: it returns in container an integer, float, or double data. The data is the size of the file.

Should an error occur, the value of the container variable is -1.

"@Devices"
Request to open or close the Diagnostic window of the module sending the information. The identifier
parameter can assume the following values:
· "Open

"
open Diagnostic

· "Close
"

close Diagnostic

The parameter identifier, when we need to interact with the move axis window, can assume the
values as follows:

"MoveAX#axis_name#HasFocus" the parameter container contains 1, if the specified move
axis window is active, otherwise it contains 0.

"MoveAX#axis_name#Jog" the parameter container contains 1, if the move for
displacements managed in runtime by the operator is set,
otherwise it contains 0.

"MoveAX#axis_name#Step" the parameter container contains 1, if the move with
predefined steps is set, otherwise it contains 0.

"MoveAX#axis_name#Absolute" the parameter container contains 1, if the move with
defined position is set, otherweise it contains 0.

where the axis name represents the name of the axis displayed in the window. E.g., if we need to
verify, if the move axis window is active, the parameter identifier will be "@MoveAX#X#HasFocus".
The name of the axis can be expressed in one of the following forms:
1. Name_Group. Name_Subgroup. Name_Axis or Name_Group. Name_Axis: the complete path of the

axis is shown.
2. Name_Axis: to identify the correct axis checks are made according to the following order:

· if the task from which it arrives the command is a function of subgroup, the axis is searched in
that sub-group.

· if the task from which it arrives the command is a function of the main subgroup, the axis is
searched in all the group. If there is more than one axis with that name, the research fails.

· if the previous checks failed, the axis is searched in all the groups in the module. If there is
more than one axis with the name Name_Axis, the research has not positive outcome.

"@Vars"
It requests the updating of a GPL global variable. It allows to perform data refreshment of
technological Parametric and tools. The parametric data is normally sent to the GPL during machine
booting. The parameter identifier will indicate the name of the global variable (machine or group)
whose update is requested. The parameter container will contain the value:
· 1 if the variable has been correctly updated
· 0 if not

"@Application"
Interaction with Albatros. It allows displaying the "message box" on the screen and close down
Albatros. Possible values for the identifier parameter are:

· "Quit" it shuts Albatros

· "IsLocked" It verifies, if the exit from the Albatros is locked. The parameter container contains 1,
if the interface is locked, 0, if it is possible to exit Albatros.

· "MsgBox" it reads the answer of a message box previously opened by a SEND

The parameter container makes it possible to know, in case of a message box, which button has been
pressed by the operator:
· 1 "OK" button
· 2 "Cancel" button
· 4 "Retry" button
· 6 "Yes" button
· 7 "No" button

Albatros176

Numeric control

In case of the "Quit" control, the parameter container will contain the value:
· 1 if Albatros was shut correctly
· 0 if not

"@Param"
It allows knowing the progressive number of Partec.xpar and Partool.xpar parametric files storing.
Requested information is stored into container parameter. Admited values for the parameter
identifier are:
· "parte

c"
it requests the progressive of partec.xpar storing

· "parto
ol"

it requests the progressive of partool.xpar storing

"@Ini"
reads a key=value combination from the tpa.ini file. The parameter identifier is the name of the key
to read in tpa.ini at section [Tpa]. To read from a specific section, the name of the section in square
brackets ("[Section]Key") must be added to the name of the key.

"@ShellExecute"
It asks the operating system to open a file using the program associated to the file extension. An
executable program can be also launched. The parameter identifier is the name of the file to open or
the name of the program to launch. The name of the file can be declared with a complete path; if not,
it is charged in the current folder of Albatros. The name of the file is searched also among those, that
are defined through "@FileName". The parameter container contains the value 0, if no errors occurred
while opening the file; otherwise, it contains the code of the error.

"@StartProg"
It executes the program defined in the parameter identifier. It is not possible to pass the arguments
to the program to launch. The name of the program must contain the whole path; if not, it is charged
in the current folder of Albatros. The name of the program is also searched also among those that are
defined through "@FileName". The parameter container contains the value 0, if the program was
successfully launched; otherwise, it contains the code of the error. If the program had already been
launched, the code or the error is 1056.

"@TermProg"
It ends the program defined in the parameter identifier and launched through "@StartProg" . The
name of the program must contain the whole path; if not, it is charged in the current folder of
Albatros. The name of the program is searched also among those, that are defined through
"@FileName". The parameter container contains the value 0, if the program was successfully
launched; otherwise, it contains the code of the error. If the program had already been launched, the
code or the error is 1056.

"@ProgRunning"
It verifies if the program, launched with "@StartProg" is still being executed. The name of the program
is defined in the parameter identifier. The name of the program must contain the whole path; if not, it
is charged in the current folder of Albatros. The name of the program is also searched among those
that are defined through "@FileName". The parameter container contains value 1, if the program is
still being executed, if not it contains value 0.

"@DialogFile"
It opens the dialog window of Open File or Save File to allow choosing the name of a file. To open the
Open File window, set the parameter identifier = "Open", to open the window of Save File, set the
parameter identifier = "Save". The choosen name of the file will be stored in the parameter
container.

"@AxisCorrector"
It substitutes the linearity corrector table of an axis with a new table, loaded from file, that anyhow
shall have the same number of correctors and the crossed axes for corrector.

The parameter identifier is the name of the file, whose extention is typically .csv and is in the folder …
\Mod.n\Config (the name of the file is 'normalized', as it happens, for instance, with "@FileExist"). The
last parameter, variable_name, must be an INTEGER variable, and will contain 1, if the new correctors
were sent, 0 otherwise. The parameter container is defined as an integer variable and will contain 1, if
the new correctors were sent, 0 otherwise.

"@Language"
It receives the translatable text corresponding to a group, library, or module message, that is
associated to a MESSAGE instruction or an ERROR instruction. The values allowed for the parameter
identifier are:

GPL Language 177

Numeric control

· "DEFMSG:number", where number is a sequence of digits. Albatros writes in container the text of
the module message number "number".

· "DEFMSG:name", where "name" is the name, group and library included, of a DEFMSG. Albatros
writes in container the text of the indicated message. If the group or library name is missing, the
name of the task that sent the RECEIVE is used.

· "DEFMSG:*", Albatros writes in container the text of the group or module message previously
indicated through the instruction SEND.

Example
;in GPL
RECEIVE "@Param", "partec", 0, prog
RECEIVE "@Param", "partool, 0, prog

;in GPL
; reads the Radix key value in the [Albatros] section from the tpa.ini
file
RECEIVE "@INI", "[Albatros]Radix", 0, value

; it opens the window of File Open and stores the name of file in the
FileName variable
RECEIVE "@DialogFile", "Open", 0, FileName

; complete reading of a file
Function ReadProperties
PARAM file AS STRING
LOCAL version AS INTEGER
LOCAL size AS DOUBLE

SEND “@FileName” “theFile” 0 file
WAITRECEIVE “@FileInfo”, “version:theFile”, 0,version
WAITRECEIVE “@FileInfo”,“size:theFile”, 0, size

SEND

Syntax
SEND [addressee,] identifier, flags [, information]

Arguments
addressee string constant
identifier string constant
flags integer constant
information name of device or constant or variable (numeric or string)

Description
This instruction is used, together with RECEIVE, to exchange information between the modules of the plant
and the supervisor PC. SEND is used to send information, RECEIVE to ask for information. Information can
be requested from Albatros or an external program (Server OLE Automation). In the second case the
request is still received by Albatros who will then send it to the external program.

The parameter addressee is a string which allows to specify who the information is sent to. There are
three classes of addressees:
· addressees beginning with the "@" character (see list further on). The addressee is really Albatros, or

better, one of its functions.
· addressees which do not begin with the "@" character. They are considered as Server OLE, and as soon

as Albatros receives an information request addressed to them, it will try to send them in execution and
then to pass on the information request received from the module.

· unspecified addressee (the parameter is actually optional). In this case the information is kept in a table
by Albatros where it is available for anyone requesting it (another module or external program).

The parameter identifier is the name of the information, and can not be omitted. It takes on different
meanings according to the addressee:
· if Albatros is the addressee, the identifier will be a command related to the accessed function
· if a Server OLE is the addressee, it will be a property of the OLE object requested.
· If the addressee is not specified it will be the label identifying the information contained in the Albatros

table.

The parameter flags allows you to specify how the requested information is to be treated by Albatros. The
acceptable values and their effects are the following:

Albatros178

Numeric control

value command description
$0001H Broadcast Normal request broadcast
$0008H CancelAfter The information is deleted after being read.
$0020H ReadOnly The information can only be deleted by the sender
$1000H UpdateFlags Modifies the status of the information (read / to read) without modifying

the data
$8000H Delete Deletes the information

The information parameter is the information sent. This can be omitted, in which case the empty
information indicates the notification of an event (it can be used to synchronise the execution of the GPL
code on a series of modules). All devices (except for the axes), simple GPL variables and strings are
recognised as information parameters.

List of addressees managed by Albatros and their commands:

"@List"
makes possible to control the commands Simulation and Setpoint
Following commands are allowed (parameter identifier):
· Sim: notifies the change in status of the Simulating switch flag. According to the flag status, its

identification button is visualized pressed or released in the toolbar (1=checked, 0=unchecked).
· Setp: notifies the change in status of the CmdSetp switch flag. According to the flag status, its

identification button is visualized pressed or released in the toolbar (1=checked, 0=unchecked).
· Esc: notifies the change in status of the Excluded switch flag. According to the flag status, its

identification button (same as the flag switch CmdSetp button) is visualized pressed or released in
the toolbar (1=checked, 0=unchecked)

· End: ends the list execution. This command lowers the Start and Stop buttons and disallows the
Start and Stop options of the menu

· Hold: lowers the Stop button and enables the Stop option of the menu. It raises the Start button and
disallows the Start option of the menu

"@Syn"
Communication between GPL and the synoptic view display. It allows to open and close the synoptic
views through GPL control and to send information to a synoptic cell.
The following commands are possible (parameter identifier):
· "Open:filename" opening of the synoptic filename.xsyn
· "Close:filename" closure of the synoptic filename.xsyn
· "Open" opening of a synoptic. The file name is read from variable information
· "Close" closure of a synoptic. The file name is read from variable information
· "cellname" cell in which the sent information is displayed
It is possible to interact with the axis move window according to the technical data, that has been
defined also for the parameter addressee "@Devices", as below.

"@File"
Writing on a file. It allows to create personalised log files to memorise the operations performed by a
machine. The files are text files (ASCII). The identifier parameter is the name of the file which will be
written on.
If in the parameter identifier the complete path, in which to store the file, is not specified, Albatros
considers that defined in TPA.ini in the section [TPA] at the item dirreport.
If the identifier starts and finishes with the symbol % inside the string is cherched in TPA.ini in section
[TPA] and used as file name. Inside the name can be inserted symbols that will be substituted during
the instruction execution:

· %n module number that execute SEND instruction
· %h current time (00-23 format)
· %d current day (01-31 format)
· %m current month (01-12 format)
· %y current year (four numbers format)

See the example.
Writing operations are carried out in append mode (the data is added at the end of the file). Numeric
data (automatically converted to ASCII) and strings can be sent in a file. It is possible to write
date/time format strings using format characters %d for the date and %t for the time. For the time we
use the format "HH:mm:ss" (that is: hours, minutes and seconds separated by ":") and for the date we
use a format, that depends on each national settings. It is possible to use another format, if you set in
TPA.ini in the section [Albatros] the option "LogNoLocale=1" (by default it is LogNoLocale=0, that is
use of the current format). It is also possible to set the format to be used for the date and the time
apart from the format set in Windows, defining always in TPA.ini in the section [Albatros] the options
"LogDateFormat=" e "LogTimeFormat=" and assigning a string of characters according the table below.
If these options are not available or are empty, we use the formats set by Windows.
Time format

h Time in 12-hours format without leading zeros

hh Time in 12-hours format with leading zeros

GPL Language 179

Numeric control

H Time in 24-hours format without leading zeros

HH Time in 24-hours format with leading zeros

m minutes without leading zeros

mm minutes with leading zeros

s seconds without leading zeros

ss seconds with leading zeros

t one only character to show the time marker, e.g. A or P

tt several characters to show the time marker, e.g. AM or PM

Notes "t" and "tt" format use the time marker shown in the control panel of the current user. It is not
necessarily "AM" and "PM".
Example: if it is 11:29 in the afternoon and the string is made up in this way "hh':'mm':'ss tt", it will
display "11:29:40 PM".

Day format

d day of the month without leading zeros, represented by the digits

dd day of the month with leading zeros, represented in digits

ddd day of the week, represented in characters and shortened to three letters

dddd day of the week, represented in characters with its full name

M month without leading zeros, represented in digits

MM month with leading zeros, represented in digits

MMM month, represented in characters and shortened to three letters

MMMM month, represented in characters with its full name

y year with two digits without leading zeros for years less than 10

yy year with two digits with leading zeros for years less than 10

yyyy year represented by four or five digits according to the calendar in use

yyyyy year represented by four or five digits according to the calendar in use

Example: if it is Wednesday, 31 August, 1994 and its string consists of "ddd', 'MMM dd yy", it will
display "Wed, August 31 94".
If the information is omitted a "return to beginning" is added to the file.

"@FileName"
stores an association between a constant string and a file name, which can be made up with string
variables. Since Albatros has received the communication of the association it replaces all the following
file names with the name received by means of this instruction. The parameter identifier is the name
of the file, which will be written. The name of the file is a variable string. If in the parameter identifier
the complete path in which to store the file is not specified, Albatros considers the one defined in
TPA.ini into the section [TPA] at the item dirreport. The value of the parameter identifier is stored in
TPA.ini in the section [GPLFileName] at the item Log, so that it can be used again also in the Albatros
executions, that follow. To cancel the association you need to set an empty string as parameter
identifier. The association, which is defined in this way, can be used for each module.

"@FileDelete"
deletes a file. The parameter identifier is the name of the file which will be deleted (complete path). If
in the parameter identifier the complete path, in which to store the file, is not specified, Albatros
considers that defined in TPA.ini in the section [TPA] at the item dirreport cannot be used. File name
can be defined according to the rules described for the parameter addressee @File

"@FileRead"
places the pointer at the beginning of the file. The parameter identifier is the file name (complete
path). If in the parameter identifier the complete path, in which to store the file, is not specified,
Albatros considers that defined in TPA.ini in the section [TPA] at the item dirreport. File name can be
defined according to the rules described for the parameter addressee @FileRead.

"@Axis"
interacts with the axis manual movement window according to the technical data, that have been
defined also for the parameter addressee "@Devices", as below. If a window that controls the
movements of the indicated axis is already open, this command acts on this window, whether it is open
in a synoptic data table or it is open in diagnostics. If the window is shut, the command tries to open it
in Diagnostics or in one of the synoptic data tables already open and that contains that axis.

"@Devices"
requires to open or close the Diagnostic window of the module sending the information. Commands
execution within the axis move window in diagnostic. The identifier parameter can get the following
values:
· "Open"open Diagnostic
· "Close"close Diagnostic
When we want to interact with the axis movement window, the parameter identifier can get the
following values:
"MoveAX#nome_asse#Open" opening of the axis movement window

Albatros180

Numeric control

"MoveAX#nome_asse#Close" closing of the axis movement window
"MoveAX#nome_asse#Plus" pushing of the axis movement button (positive direction)
"MoveAX#nome_asse#Minus" pushing of the axis movement button (negative direction)
"MoveAX#nome_asse#Stop" pushing of the stop button
"MoveAX#nome_asse#Jog" it sets the movement mode for displacements managed in runtime

by the operator
"MoveAX#nome_asse#Step" it sets the movement mode for displacements with predefined

step
"MoveAX#nome_asse#Absolute" it sets the movement mode with displacement of axis to a defined

position
where the axis name represents the axis name displayed in the window. E.g, if you need to open the
X-axis move window, the parameter identifier is "@MoveAX#X#Open". The axis can be named as
follows:
1. Name_Group.Name_Subgroup.Name_Axis or Name_Group.Name_Axis: the complete axis path is

given.
2. Name_Axis: to identify the right axis, tasks are verified according the following order:

· If the task from which the command arrives is a function of subgroup, the axis is searched in
that subgroup.

· If the task from which the command arrives is a function of the main group, the axis is
searched in all the group. If there is more than one axis with that name, the research fails.

· If the previous checks failed, the axis is searched in all the groups of the module. If there is
more than one axis with Name_Axis, research has not positive outcome.

It is possible to prevent the user to act on the keys of axis move of all the axis movement windows of
the module in diagnostic. For this purpose the parameter identifier should be set as follows:
· "MoveAX##UIENABLE" if the parameter information is set on 0, the axes move from Albatros is

disabled; if it is set on 1e, the axes move is enabled from Albatros.
We suggest to disable axes move from Albatros, when the axes are moved from the machine's control
panel.

"@Vars"
requires to save the content of a GPL global variable in the store of the technological parameters or
tools. The parameter identifier is the name of the global variable (of machine whether group or
library) for which the update is required.

"@Application"
Interaction with Albatros. It allows closing Albatros or displaying "message boxes" on the screen,
informing the user or asking permission for later actions. Possible values for the identifier parameter
are:
"Quit" to close Albatros
"Lock" prevents from closing Albatros from File->Exit or from keyboard shortcuts

[ALT+F4] or from closing button.
"Unlock" restores the possibility of closing Albatros
"MsgBox:flags" to open a message box
The behaviour of the message boxes is controlled by the "flags" of the identifier string. This can be a
a sequence of the following characters (they can indifferently be uppercase or lowercase):
"O" "OK" button
"C" "Cancel" button
"Y" "Yes" button
"N" "No" button
"R" "Retry" button
"S" Stop sign icon
"?" Information icon, consisting of a lowercase 'i' within a circle
"!" Exclamation mark icon
"*" information icon
"1" the first button is the default
"2" the second button is the default
"3" the third button is the default
"4" the fourth button is the default

If not indicated, the default button is the first one.
For example "MsgBox:?YN2" identifies a message box with an information icon and two "Yes" and "No"
buttons where the latter one is the default button. The information parameter can be a string, containing
the text to be displayed, or an integer number which is recognized as the code of a module message
handled by TpaLangs.exe, or a group message label defined by the DEFMSG instruction.
As far as the text is concerned, if in it there is the newline character, "\u000A", the text will be split in two
parts, and the first part will be displayed as text in the message box, while the second part will be
displayed as explanation, or detail, of the text.
The language in which the two buttons will be displayed is the one of Windows.

"@Help"

GPL Language 181

Numeric control

opens a help file. It allows to command the display of a help file by specifying the argument to be
displayed. Possible values for the identifier parameter are:
· "Open:filename" to open a help file
· "Close:filename" to close a help file
The "filename" part of the string, specifies the name of the help file to be opened.
The parameter information can be a string or a number and assumes accordingly the meaning of key
or context number (to identify the page or help argument to be displayed).

"@Report"
adds messages to the Albatros report file (MONTH (n month).TER). The parameter Identifier is:
· "Add"
The parameter Information can be:
· a string variable or a string constant: the text, contained in the string, is saved in the report file
· an integer variable or an integer numeric value: the text, defined by the DEFMSG instruction, is

saved

"@Ini"
writes a key=value combination from the TPA.ini file. The parameter identifier is the name of the key
to add in TPA.ini at section [TPA]. To write in a specific section, the name of the section in square
brackets ("[Section]Key") must be added to the name of the key
The parameter information can be a string or numeric variable, a string or a numeric constant.

"@ShellExecute"
It asks the operating system to open a file using the program associated to the file extension. It is also
possible to launch an executable program. The parameter identifier is the name of the file to open or
the name of the program to launch. The name of the file can be declared with a complete path; if not,
it is charged in the current folder of Albatros. The name of the file is also searched among those that
are defined through "@FileName".

"@StartProg"
executes the program defined in the parameter identifier. It is not possible to pass any arguments to
the program to launch. The name of the program must contain the whole path; if not, it is searched in
the current folder of Albatros. The name of the program is searched also among those that are defined
with "@FileName".

"@TermProg"
ends the program defined in the parameter identifier and launched through "@StartProg". The name
of the program must contain the whole path; if not, it is charged in the current folder of Albatros. The
name of the program is searched also among those that are defined through "@FileName".

"@DialogFile"
it allows setting some parameters related to the dialog box of File Open or File Save.
The values allowed for the parameter identifier are:
“Extension” if the user does not enter an extension, the extension defined in theinformation

parameter is used (variable or string constant)
“Filter” sets the filter on the file types to be used. The information parameter can be a

string variable or a string constant; in this case the text in the string, an integer
variable or an integer numerical value is used as a filter and in this case the text
defined in the DEFMSG instruction is used as a filter.

“Flags” set the initialisation flags. For the list of the values to be set in the information
field (variable or integer constant), please make reference to the official Microsoft
documentation concerning the Flags member of the OPENFILENAME structure.

“InitalDir” set the initial folder, defined in the information field (variable or string constant)
“Title” sets the box name. The information parameter can be a string variable or a string

constant; in this case the text in the string, an integer variable or an integer
numerical value is used as a filter and in this case the text defined in the DEFMSG
instruction is used as a filter.

"@Language"
it sets the number of group, module, or library message that will be used in the following RECEIVE with
the same identifier. The allowed value for the parameter identifier is "DEFMSG:*". The parameter
information can be an integer variable or integer constant, and in this case it defines the number of
group message to be displayed. It can be a string or a string constant, and in this case it defines the
name of the DEFMSG.

Example

; Example of send file instruction with name created during execution.
: Supposing that the date of instruction execution

Albatros182

Numeric control

; is 31-01-2000

; in GPL
SEND "@File", "%Log%", 0, "Start execution"
; it adds a "Line Feed"
; in the tpa.ini file, section [TPA] we add
SEND "@File", "%Log%", 0
Log=c:\Albatros\report\%y\Rep%m%d.txt

; The name of final file is:
c:\Albatros\report\2000\Rep0131.txt

; Example of send Vars instruction
; we define a Var_SendVars variable as
; double in the file of the global variables
; in the technological Parameters Var_SendVars is entered
; in the field Matrix Name
; in GPL
SETVAL 100.0,Var_SendVars
; sends the 100.0 value to the parameter of the technological Parameters
; associated to the Var_SendVars variable
SEND "@Vars", "Var_SendVars", 0

; Example of send INI instruction
; in TPA.ini the Radix key is entered in the [Albatros] section to set
; a numerical basis of decimal number view
SEND "@INI", "[Albatros]Radix", 0;1

; Example of setting up an association between GPL constant string
; and name of a file.

; declaration of a string variable
filename as string
; composition of the file name
setstring "C:\Albatros\report\LogFile.txt",filename
; association
SEND "@FileName", "LOG",0,filename
; all the writing operations from now are
; performed in the file defined by the filename variable
SEND "@File", "LOG",0, "Writing in the LOG file"

SENDIPC

Syntax
SENDIPC IPCname, wait [, varname1 [, varnameN,...]]
SENDIPC IPCname, wait , matrix[row]
SENDIPC IPCname, wait , vector
SENDIPC IPCname, wait , matrix

Arguments
IPCname string constant. Name of the IPC
wait default constant. Wait mode of command read

Possible values are:
WAIT waits for the command to be read
NOWAIT does not wait for the command to be read

varname1[…varnameN] constant or variable. Names of variables 1÷N
matrix[row] constant or integer variable. Matrix row number
vector name of vector
matrix name of matrix

Description
It sends an IPC command to the "IPCname" shared memory.
When the SENDIPC instruction is executed for the first time the shared memory is allocated; the memory's
dimension is calculated on the basis of the size of sent data. The maximum shared memory dimension is 64
Kb. Up to 48 shared memories can be defined with 48 distinct names.

GPL Language 183

Numeric control

A semaphore is connected to the memory to allow synchronisation of the tasks accessing it. The task
writing the data enables the semaphore when it finishes writing, the task reading the data disables it when
it finishes reading.
If WAIT was indicated as wait parameter, the task sending the data will wait for them to be read (disabled
semaphore) before continuing execution.
A SENDIPC without data simply synchronises the tasks. In this case no shared memory is allocated.

IPC intermodule
Two remote modules can exchange data through IPCs. These IPCs are called IPC intermodule. To define an
IPC intermodule you need to write the IPCname according to the following formalism:
Number of source module, "->", number of the recipient module, ":", and hereafter the other character of
the IPC name.
For example, "0->1:Base Parameters".

See also WAITIPC and TESTIPC.

WAITIPC

Syntax
WAITIPC IPCname [, varname1 [, varnameN,...]]
WAITIPC IPCname, matrix[row]
WAITIPC IPCname, vector
WAITIPC IPCname, matrix

Arguments
IPCname string constant. Name of IPC
varname1[...varnameN] constant or variable. Names of variables 1÷N
matrix[row] constant or integer variable. Matrix row number
vector name of vector
matrix name of matrix

Description
It receives an IPC command from the "IPCname" shared memory.
When the SENDIPC instruction is executed for the first time the shared memory is allocated; the memory's
dimension is calculated on the basis of the size of sent data. The maximum shared memory dimension is 64
Kb. Up to 48 shared memories can be defined with 48 distinct names.
A semaphore is connected to the memory allowing to synchronise the execution of the tasks accessing it.
The task reading the data waits for the semaphore to be enabled by the task writing the data, it reads the
data and then disables the semaphore.

A WAITIPC without data simply synchronises the tasks. In this case the shared memory is not allocated.
See also SENDIPC and TESTIPC.

WAITRECEIVE

Syntax
WAITRECEIVE [source,] identifier, flags [, container]

Arguments
source string constant
identifier string constant
flags integer constant
container name of device or variable (numeric or string)

Description
It waits for the requested information (specified by identifier) to arrive, before continuing execution of the
GPL program. For use, consult documentation of the RECEIVE instruction.

Mathematics10.3.10

ABS

Syntax
ABS operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Albatros184

Numeric control

Description
It extracts the absolute value of operand and puts in result. To convert data, according to the type of
declared data, see chapter Data conversion.

Example

SETVAL -10,op; sets -10 to the op variable
ABS op,var

;The value set in the var variable is 10

ADD

Syntax
ADD operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description
It sums operand1 to operand2 and puts the result in result. To convert data, according to the type of
declared data, see chapter Data conversion.

Example

SETVAL 5,op1 ; sets 5 to the op1 variable
ADD op1,3,var

;The value set in the var variable is 8

AND

Syntax
AND operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description
It performs a binary AND operation (between two bits, the result is 1 only if both equal 1) between
operand1 and operand2 and puts the result in result. To convert data, according to the type of declared
data, see chapter Data conversion.

Example

;The value set in the var variable is 1
;(Binary notation: 5 = 0101, 3 = 0011, 1 = 0001)

AND 5,3,var

ARCCOS

Syntax
ARCCOS operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description

GPL Language 185

Numeric control

It carries out an arc cosine operation on operand and puts the value, in degrees, in result. The value of

the result can range between 0°÷180°. To convert data, according to the type of declared data, see

chapter Data conversion.

ARCSIN

Syntax
ARCSIN operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It carries out an arc sinus operation on operand and puts the value, in degrees, in result. The value of the

result can range between -90°÷+90°. To convert data, according to the type of declared data, see chapter

Data conversion.

ARCTAN

Syntax
ARCTAN operand1 [, operand2], result

Arguments
operand1...[operand2] constant or variable or name of device
result variable or name of device

Description
If operand2 is omitted, it carries out an arc tangent operation of operand1 and puts the value, in
degrees, in result.
If operand2 is present, the considered angle is the one whose sinus is given by operand1 and whose
cosine is given by operand2. To convert data, according to the type of declared data, see chapter Data
conversion.

COS

Syntax
COS operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It carries out a cosine operation on operand and puts the value in result.

The argument operand is expressed in degrees with a possible centesimal fractionary part (ex.: 30° 15" =

30,25.). To convert data, according to the type of declared data, see chapter Data conversion.

Example

SETVAL 60,op ; sets 60 to the op variable
COS op,var

;The value set in the var variable is 0.5

DIV

Syntax
DIV operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description

Albatros186

Numeric control

It performs a division between operand1 and operand2 and puts the result in result.
The instruction can generate a system error when operand2 equals 0. To convert data, according to the
type of declared data, see chapter Data conversion.

Example

SETVAL 10,op1 ; sets 10 to the op1 variable
SETVAL 5,op2 ; sets 5 to the op2 variable
DIV op1,op2,var

;The value set in the var variable is 2

EXP

Syntax
EXP operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It calculates the exponential of operand and puts the value in result. To convert data, according to the
type of declared data, see chapter Data conversion.

Example

SETVAL 2.302585093,op ;sets 2.302585093
;in the op variable

EXP op,var

;The value set in the var variable is 10

EXPR

Syntax
EXPR variable = expression

Arguments
variable name of device or variable
expression group of operators

Description
This instruction allows to resolve mathematical expressions. Factors may be constants, names of devices or
variables. Its syntax provides that between each operator and each operand a spacing should be entered.
If the operands are not of the same type, an automatic conversion is carried out and the type of the result
of the operation is the same as the greater one, according the following rule:
· char <integer
· float < double
· char or integer < float or double.
After resolving the expression, the result is converted to the variable type.

The following operators are allowed:

() brackets

- sign change operator

ABS absolute operand value

ROUND unit round up/round down

TRUNC value truncated to whole number

LOG natural logarithm

LOGDEC decimal base logarithm

EXP exponential

SRQ square root operation

SIN sine operation. The operand is expressed in degrees, indicating the value

to two decimal points if applicable (e.g..: 30° 15" = 30.25.)

GPL Language 187

Numeric control

COS cosine function operation. The operand is expressed in degrees,

indicating the value to two decimal points if applicable (e.g..: 30° 15" =

30.25.)

TAN tangent operation, expressed in degrees

ARCSIN arc sine operation. The result is expressed in degrees, with the value

in a -90°÷+90° range

ARCCOS arc cosine operation. The result is expressed in degrees, with the

value in a 0°÷180° range

ARCTAN executes an arc tangent operation. See ARCTAN

ˆ power operator

* multiplication

/ division

% division remainder (module)

+ addition

- subtraction

This instructions allows for GPL code writing to be simplified, when performing mathematical calculations;
the single GPL instructions corresponding to the operators listed in the table are replaced. These
instructions stay available for compatibility purposes.

Example

; calculation of the distance between two points

EXPR dist = SQR ((Xb - Xa) ^ 2 + (Yb - Ya) ^ 2)

LOG

Syntax
LOG operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It calculates the natural logarithm of operand and puts the result in result. To convert data, according to
the type of declared data, see chapter Data conversion.

Example

SETVAL 10,op ; sets 10 to the op variable
LOG op,var

;The value set in the var variable is 2.302585093

LOGDEC

Syntax
LOGDEC operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It calculates the base 10 logarithm of operand and puts the value in result. To convert data, according to
the type of declared data, see chapter Data conversion.

Example

Albatros188

Numeric control

SETVAL 10,op ; sets 10 to the op variable
LOGDEC op,var

;The value set in the var variable is 1

MOD

Syntax
MOD operand1, operand2, result

Arguments
operand1 constant or integer variable or name of device
operand2 constant or integer variable or name of device
result integer variable or name of device

Description
It performs a module operation between operand1 and operand2 and puts the result in result. The
module is the remainder resulting from the division between the first and the second operand. The
instruction can generate a system error when operand2 equals 0. To convert data, according to the type
of declared data, see chapter Data conversion.

Example

SETVAL 20,op1 ; sets 20 to the op1 variable
SETVAL 3,op2 ; sets 3 to the op2 variable
MOD op1,op2,var

;The value set in the var variable is 2

MUL

Syntax
MUL operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description
It performs a multiplication operation between operand1 and operand2 and puts the result in result. To
convert data, according to the type of declared data, see chapter Conversion data.

Example

SETVAL 5,op1 ; sets 5 to the op1 variable
SETVAL 2,op2 ; sets 2 to the op2 variable
MUL op1,op2,var

;The value set in the var variable is 10

NOT

Syntax
NOT operand

Arguments
operand variable or name of device

Description
It performs a binary NOT operation (the single bits are inverted) on the value expressed by operand. The
result is stored in operand.

Example

SETVAL 5,var ; sets a value of 5 to "var"

GPL Language 189

Numeric control

NOT var

; The result is var = -6
; Binary notation: 5 = 0000 0101,
; Binary notation:10 = 0000 1010
; Hexadeciaml notation 5 = 0000 0000 0000 0005
; Hexadeciaml notation 10 = 0000 0000 0000 000A
; by executing a NOT on value 5 the result is 0xFFFF FFFF FFFF FFFA = -6

OR

Syntax
OR operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description
It carries out a binary OR operation (between two bits, the result is 1 if at least one equals1) between
operand1 and operand2 and puts the result in result. To convert data, according to the type of declared
data, see chapter Data conversion.

Example

;The values set in the var variable is 7
;(Binary notation: 5 = 0101, 3 = 0011, 7 = 0111)

OR 5,3,var

RANDOM

Syntax
RANDOM min, max, result

Arguments
min constant or variable
max constant or variable
result variable or name of device

Description
It send to result a pseudocasual number included between min and max (extremes included).
By executing the instruction repeatedly you obtain a sequence of pseudocasual numbers. To convert data,
according to the type of declared data, see chapter Data conversion.

Example

SETVAL 2,op1 ; sets 2 in the op1 variable
SETVAL 100,op2 ; sets 100 in the op2 variable
RANDOM op1,op2,var

;The value set in the var variable is a random number
;included between 2 and 100

RESETBIT

Syntax
RESETBIT mask, nbit

Arguments
mask constant or integer variable or countername or portname. It indicates the

value to be modified (max 32 bit)
nbit constant or integer variable or countername. Number of bit to be modified

Description

Albatros190

Numeric control

It sets a single bit of the passed bit mask, specified by nbit, to 0. The argument mask must correspond
to an integer value with a maximum of 32 bit. The number of bits, nbit, ranges between 1 and 32.

Example

Status of the port before executing the code

Status of the port after executing the code

;--
; Example to disable the line of a flag port:
;--

SETVAL 2,nbit
RESETBIT FlagPort,nbit

; disables line 2 of the flag port

ROUND

Syntax
ROUND operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It performs a rounding operation on the operand and puts the value in result. To convert data, according
to the type of declared data, see chapter Conversion data.

Example

SETVAL 5.7,op ;sets 5.7 in the op variable
ROUND op,var

; The value set in the var variable is 6

SETVAL 5.2,op ;sets 5.2 in the op variable
ROUND op,var

; The value set in the var variable is 5

SETBIT

Syntax
SETBIT mask, nbit

Arguments
mask constant or integer variable or countername or portname. Value to be

modified (max 32 bit)
nbit constant or integer variable or countername. Number of the bit to be

modified (1÷32)

Description
It sets a single bit of the passed bit mask, specified by nbit, to 1. The argument mask must correspond
to an integer value with a maximum of 32 bit. The number of bits, nbit, ranges between 1 and 32.

Example

Status of the port before code execution

GPL Language 191

Numeric control

Status of the port after code execution

;---
; Example to enable a line of the flag port:
;
;---

SetVal 2,nbit
Setbit FlagPort,nbit

; it enables line 2 of the flag port

SHIFTL

Syntax
SHIFTL operand 1 [, operand2]

Arguments
operand1 variable (integer or char) or name of device
operand2 variable (integer or char) or name of device

Description
If operand2 is not specified, this instruction performs a left hand shift operation of the bits that make up
the operand1. If the second operand also is specified, a rotation is performed among the bits of
operand2 and the bits of operand1. At the end of the operation, operand2 will contain the carry, that is
the high bit of operand1.

Example
Integer operands rotation (Left hand shift with carry)

Before the rotation

After the rotation

Albatros192

Numeric control

Shift (Left hand shift without carry)

SHIFTR

Syntax
SHIFTR operand1 [, operand2]

Arguments
operand1 variable (integer or char) or name of device
operand2 variable or name of device

Description
If operand2 is not specified, this instruction performs a right hand shift of the bits that make up the
operand1. If operand1 is defined as char, the high entry bit is always 0. If operand1 is defined as
integer, the entry bit 32 is the mark bit.
If the second operand is also specified, it performs a rotation operation among the operand2 defined as
value 0 or different from 0 and the bits of operand1. At the end of the operation, operand2 will contain
the carry of the operation and the highest bit of operand1 will be 0 or 1, according to the initial value of
operand2 (0 or 1).

Example

Integer operands rotation (Right hand shift with carry)
Before the rotation

GPL Language 193

Numeric control

After the rotation

Char right hand shift (right hand shift without carry)

Integer right hand shift (right hand shift without carry)

Albatros194

Numeric control

SIN

Syntax
SIN operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It carries out a sinus operation on operand and puts the result in result.

The argument operand is expressed in degrees with a possible centesimal fractionary part (ex.: 30° 15" =

30,25.). To convert data, according to the type of declared data, see chapter Data conversion.

Example

SetVal 30,op ;sets 30 in the op variable
Sin op,var

;The value set in the var variable is 0.5

SQR

Syntax
SQR operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It extracts the square root of operand and puts the value in result.
Only positive values are admitted in the operand parameter. To convert data, according to the type of
declared data, see chapter Data conversion.

Example

SetVal 81,op ;sets 81 in op variable
Sqr op,var

;The value set in the var variable is 9

SUB

Syntax
SUB operand1, operand2, result

Arguments
operand1 constant or variable or name of device

GPL Language 195

Numeric control

operand2 constant or variable or name of device
results variable or name of device

Description
It performs a subtraction operation between operand1 and operand2 and puts the result in result.
To convert data, according to the type of declared data, see chapter Data conversion.

Example

SetVal 10,op1 ; sets 10 in the op1 variable
SetVal 4,op2 ; sets 4 in the op2 variable
Sub op1,op2,var

;The values et in the var variable is 6

TAN

Syntax
TAN operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It performs a tangent operation in operand and puts the result in result.
The operand argument is expressed in degrees. To convert data, according to the type of declared data, see
chapter Data conversion.

Example

SetVal 45,op ;sets 45 in the op variable
Tan op,var

;The value set in the var variable is 1

TRUNC

Syntax
TRUNC operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It truncates to integer the value of operand and puts the result in result. (the decimal part goes lost). To
convert data, according to the type of declared data, see chapter Data conversion.

Example

SetVal 5.7,op ;sets 5.7 to the op variable
Trunc op,var

;The value set in the var variable is 5

XOR

Syntax
XOR operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description

Albatros196

Numeric control

It performs a binary XOR operation (between two bits, the result is one if only one of the two equals one)
between operand1 and operand2 and puts the result in result. To convert data, according to the type of
declared data, see chapter Data conversion.

Example

Xor 5,3,var

;The value set in the var variable is 6
;(Binary notation: 5 = 0101, 3 = 0011, 6 = 0110)

Multitasking10.3.11

ENDMAIL

Syntax
ENDMAIL mail

Arguments
mail constant or integer variable. Number of mailbox (1÷256)

Description
It indicates the end of execution of a command associated to a message taken from the mail post box.
The task that sent the message (using the SENDMAIL instruction) and was waiting for command execution
(wait arguments WAITACK) can now carry on with its own execution. This instruction is effective only
when executed within task that previously received the message (with the WAITMAIL or TESTMAIL
instruction).

See also instructions SENDMAIL, WAITMAIL and TESTMAIL

Example
Axis movement server

ENDREALTIMETASK

Syntax
ENDREALTIMETASK functionname

Arguments
functionname name of function

Description
It stops the execution of a real-time task. See also STARTREALTIMETASK.

ENDTASK

Syntax
ENDTASK [taskname]

Arguments
taskname name of task

Description
It interrupts the execution of a task together with all the tasks activated by it (child tasks).
This instruction also interrupts axis movement, cancels pending RECEIVEs and closes any connections with
the serial ports.
If the taskname variable is omitted, it ends the execution of the current task.

GETPRIORITYLEVEL

Syntax
GETPRIORITYLEVEL level[,functionname]

Arguments
level variable. Execution priority level
functionname name of function

Description

GPL Language 197

Numeric control

It gives back the priority value of the task indicated by functionname to the level variable. This value is a
number included between 1 and 255, where 1 indicates the highest priority level and 255 the lowest. If
functionname is not specified, the priority value returned is the value of the current task, that is the
function in which the GETPRIORITYLEVEL instruction is executed.
See also SETPRIORITYLEVEL.

GETREALTIME

Syntax
GETREALTIME varname

Arguments
varname integer variable

Description
It returns to the varname variable the amount of time elapsed since the beginning of the last real-time
axis handling. Time is expressed in microseconds. See also GETREALTIMECOUNT.

GETREALTIMECOUNT

Syntax
GETREALTIMECOUNT varname

Arguments
varname integer variable

Description
It returns to the varname variable the number of real-time axis-handlings executed since the last numeric
control initialization. See also GETREALTIME.

HOLDTASK

Syntax
HOLDTASK [nametask]

Arguments
nametask name of task

Description
It interrupts the execution of the task defined in nametask. This instruction does not stop axis movement,
which has to be interrupted through the STOP instruction.
If nametask is omitted, it interrupts the task in progress.

RESUMETASK

Syntax
RESUMETASK [nametask]

Arguments
nametask name of task

Description
It reactivates the execution of the task specified in nametask. If nametask is omitted, it reactivates the
execution of the current task. If the task was interrupted using the STOPTASK instruction, axis movement
is resumed as well.

SENDMAIL

Syntax
SENDMAIL mail, wait [, varname1 [,…varnameN]]
SENDMAIL mail, wait, matrix[row]

Arguments
mail constant or integer variable. Mailbox number (1÷256)
wait default constant. Command read or command execution wait mode.

The values that can be attributed to the wait constant are:

Albatros198

Numeric control

- WAIT waits for the command to be read
- NOWAIT does not wait for the command to be read
- WAITACK waits for command execution

varname1[…varnameN] constant or integer variable. Names of variables 1÷20
matrix[row] constant or integer variable. Matrix row number

Description
It sends a message (or command) to the mail box. The messages can be used to synchronise and
exchange information between two or more tasks.

If the mail box does not exist, meaning that no WAITMAIL or TESTMAIL instruction has been executed, the
instruction is simply ignored.

If the receiver task is not waiting for a message (WAITMAIL instruction) or is engaged, the data (varname
(1÷20) or the matrix row specified by matrix[row]) sent from the instruction is saved in a queue. In this
case:
1. if the wait argument is NOWAIT, the execution carries on with the following instruction;
2. if the wait argument is WAIT, the execution waits for the message to be read by the receiver task;
3. if the wait argument is WAITACK, execution waits for the message to be read and the execution of the

command to be confirmed by the receiver task (through the instruction ENDMAIL or a new WAITMAIL).

It is very important that the number of the variables and their type coincide with those used to create the
mail box with the WAITMAIL instruction. The control does not allow using different types and does not use
automatic type conversion (cast) as usually happens.

A SENDMAIL without optional parameters (data) functions simply as a task synchronisation mechanism.

Example
Axis movement server

SETPRIORITYLEVEL

Syntax
SETPRIORITYLEVEL level [, functionname]

Arguments
level constant or variable. Execution priority level.
functionname name of function

Description
It assigns the priority value included in the level variable to the task defined in functionname. This value
is a number included between 0 and 255, where 0 indicates the highest priority level and 255 the lowest.
If the name of the task is not specified in the functionname variable, it modifies the value of the current
task, that is the execution level of the function in which the instruction is executed.
See also GETPRIORITYLEVEL.

STARTREALTIMETASK

Syntax
STARTREALTIMETASK functionname

Arguments
functionname name of function

Description
It activates the execution of a real-time task. This kind of task is executed with the same frequency as the
axis control real-time. Unlike normal GPL tasks, every real-time is executed entirely, from the first function
instruction to the first FRET instruction. See also ENDREALTIMETASK.

Note:
The local variables declared in the real-time task are initialized only by the start of the task and then they
maintain the value of the last run.

STARTTASK

Syntax
STARTTASK taskname [, parameters]

GPL Language 199

Numeric control

Arguments
taskname name of task
parameters any parameters needed during task execution

Description
It activates the execution of the task defined in the taskname variable.
Any parameters needed during execution can be passed to the task. The number and type of the
parameters must match the ones declared in the function implementing the task. If the task is already in
execution the instruction does not have any effect.

Example
Parallel/Sequential execution

STOPTASK

Syntax
STOPTASK taskname

Arguments
taskname name of task

Description
It stops the execution of a task and of all the tasks executed by it (child tasks), interrupting axis movement
(if in progress).
If taskname is omitted, it stops execution of the current task. Task execution and axis movement can be
reactivated through the RESUMETASK instruction.

WAITMAIL

Syntax
WAITMAIL mail [, varname1 [,..varnameN]]
WAITMAIL mail, matrix[row]

Arguments
mail constant or integer variable. Mailbox number (1÷256)
varname1[...varnameN] constant or integer variable. Names of variables 1÷20
matrix[row] constant or integer variable. Matrix row number

Description
It receives a message from the mail mail box. The message may come with attached data.
The data received with the message is memorised in the indicated varname variables (1÷20) or in the
matrix row specified by matrix[row].
If no other messages are waiting to be read when the WAITMAIL instruction is executed, the task is put in
HOLD status, which is terminated only when another task sends a message to the box with the SENDMAIL
instruction.
The congruence between the old data and the data expected by the instruction, is checked during
instruction execution.
A WAITMAIL without optional parameters is reduced to a simple synchronisation mechanism between tasks.
See also instructions SENDMAIL, ENDMAIL and TESTMAIL

Example
Axis movement server

WAITTASK

Syntax
WAITTASK taskname

Arguments
taskname name of task

Description
It waits for the taskname task to end execution.

Example
Sequential/Parallel execution

Albatros200

Numeric control

Flow management10.3.12

CALL

Syntax
CALL subprogramname

Arguments
subprogramname name of subprogram, label

Description
It executes the subprogram specified by the subprogramname label.
Each subprogram, to return to the next CALL instruction, must end in the exit point with the instruction:
RET.

Note
Together with RET, this instruction is a typical source of programming errors. We recommend taking great
care when using it, in particular we suggest positioning the subprocedures at the end of the body of the
function (after the FRET instruction) so as to avoid accidental execution of the subprocedure, as if it were
an integral part of the main code. This situation, in the best of hypothesis, generates a system error; in
other cases it causes anomalous behaviour of the machine whose origin is difficult to recognise.

DELONFLAG

Syntax
DELONFLAG flagname

Arguments
flagname name of flag device

Description
It disables the software interruption management on the status of a flag bit or flag switch which was
previously enabled with the ONFLAG instruction.

DELONINPUT

Syntax
DELONINPUT nameinput

Arguments
nameinput name of input

Description
It disables the software interruption management on the status of an input which was previously enabled
with the ONINPUT instruction.

FCALL

Syntax
[FCALL] functionname [, parameters]
functionname [parameters]

Arguments
functionname name of the function to be called
parameters any parameters passed to the function

Description
It calls a function, meaning that the functionname function is executed.
Any necessary parameters are passed to the function. These must match in number and type the
parameters declared in the call function.
Execution of the caller function (the one where the FCALL is executed) restarts at the end of the call
function (the one specified in the functionname parameter).

Note the difference from the STARTTASK instruction, which sends another function in execution in parallel
with the caller function (it is used to have more tasks in execution at the same time).

Example
Sequential/Parallel execution

GPL Language 201

Numeric control

FOR/NEXT

Syntax
FOR index, begin, end [, step]

instruction
instruction
...

NEXT

Arguments
index variable or countername
begin constant or variable or countername. Beginning value
end constant or variable or countername. End value
step constant or variable or countername. Increase or decrease step

Description
It repeats cyclically the execution of the instructions included between the FOR instruction and the NEXT
instruction.
During the first cycle the index variable is set on the value of the begin variable. In the second cycle the
value of the index variable will equal (begin+step), and so on until the index variable is greater (or
smaller, if the step variable is a negative value), than the end variable. If the step variable is omitted, a
default value equal to +1 is set.
The instructions included between FOR and NEXT can modify the number of repetitions by modifying index.
When the repetitions end, it executes the instruction after NEXT.

Example

Function Loop
local i As integer
local vector[10] as integer

For i,1,10
Setval i, vector[i] ; it fills in the elements

; of the vector
; with numbers 1,2,.... 10

Next
Fret

Function loop2
local j As integer
local vector[10] as integer

For j,1,10,2
Setval 27, vector[j] ; sets the value 27 in the following

; element of the vector: 1,3,5,7,9
Next
Fret

FRET

Syntax
FRET

Arguments
no argument

Description
Return from a function. It causes the interruption of the execution of a function and the release of the
memory allocated for the local variables. If the function was sent in execution with an FCALL, caller function
execution restarts from the next instruction.
If any WAITASKS were executed previously with the current function (the one in which the FRET is
executed) as argument, the waiting tasks are released.

Albatros202

Numeric control

GOTO

Syntax
GOTO label

Arguments
label label

Description
It makes an inconditional jump to the label specified in the label parameter.
A label is defined by a keyword followed immediately by the character ":".
The label must be contained in the body of the function in which the GOTO instruction is executed.

Note
The body of a function is the part included between the FUNCTION instruction, which declares the name of
the function, and the instruction defining the following function (or the end of the file). It is clear, then, that
it is possible to jump from the main body of the function to any existing subprocedures (see CALL and RET
instructions). We highly discourage this programming style as it generates numerous errors which are
difficult to identify.

Example

; Function to make a flag flash
; (for ex. a warning light on a synoptic panel)

Function Loop

loop:
Setflag alarm ; enables the flag
delay 1
resetflag alarm ; disables the flag
delay 1
goto loop
Fret

IF/IFVALUE/IF-THEN-ELSE

Syntax
IF varname, comparison operator, value, GOTO label
IF varname, comparison operator, value, CALL subprogramname
IF varname,comparison operator, value, functionname

IF varname, comparison operator, value THEN
instruction
instruction
…

ENDIF

IF varname, comparison operator, value THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
varname constant or variable or devicename
comparison operator the symbols used for comparison are:

< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or devicename
label name of the label to jump to
subprogramname name of subprogram
functionname name of function

GPL Language 203

Numeric control

Description
The IF and IFVALUE instructions are synonyms. We suggest using the short version.
The instruction allows to make a comparison between varname and value and, according to the result, to
execute an action.
In the first three forms, if the comparison is positive, it can jump to label (GOTO), call a subprogram
(CALL) or call a function (functionname). When the execution of the function or subprogram ends, it carries
on from the following line. If the comparison is negative, the execution of the program continues. The IF…
THEN construction allows to carry out one or more instructions conditionally. The instructions included
between the keywords THEN and ENDIF are executed if the comparison between varname and value is
positive.
The IF…THEN…ELSE construction allows to define two blocks of instructions, of which only one will be
executed. If the comparison between varname and value is positive, the instructions included between
the keywords THEN and ELSE will be executed, if it is negative it will execute the instructions included
between the words ELSE and ENDIF. In both cases the execution then continues with the instruction
following ENDIF.

Note
IFVALUE is kept for compatibility with earlier GPL versions.

IFACC

Syntax
IFACC axis, GOTO label
IFACC axis, CALL subprogramname
IFACC axis, functionname

Arguments
axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It checks whether the axis specified in the axis variable is in acceleration.
If it is, it jumps to label or calls subprogramname or functionname.

IFAND

Syntax
IFAND operand1, operand2, testvalue, GOTO label
IFAND operand1, operand2, testvalue, CALL subprogramname
IFAND operand1, operand2, testvalue, functionname

IFAND operand1, operand2, testvalue THEN
instruction
instruction
…

ENDIF

IFAND operand1, operand2, testvalue THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
operand1 constant or variable or devicename
operand2 constant or variable or devicename
testvalue constant. Value used to check the result of the operation. Possible values

are: TRUE 1, FALSE 0
label name of the label to jump to
subprogramname name of the subprogram
functionname name of the function

Description

Albatros204

Numeric control

Two comparisons are performed, the first between operand1 and operand2, the second between the
result of the first comparison and testvalue.
The first comparison consists of a binary AND between operand1 and operand2. The two operands are
interpreted as bit masks. If in the result of the binary AND at least one bit is not equal to 0, the result of
the first comparison is TRUE. This will then be compared with testvalue. If the two values coincide, a jump
to label or a call function or call subprogram is performed.
For further details, see the construct IF-THEN-ELSE.

IFBIT

Syntax
IFBIT mask, nbit, status, GOTO label
IFBIT mask, nbit, status, CALL subprogramname
IFBIT mask, nbit, status, functionname

IFBIT mask, nbit, status THEN
instruction
instruction
…

ENDIF

IFBIT mask, nbit, statuse THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
mask constant or integer variable or countername or nameport. Value to be

verified
nbit constant or integer variable or countername. Number of the bit (1÷32)
status predefined constant. Status to be verified on mask.

Acceptable values are:
ON chosen bit to 1
OFF chosen bit to 0

label jump label (GOTO)
subprogramname call subprogram (CALL)
functionname name of function

Description
Test on a single bit of the passed bit mask. The mask argument must correspond to an integer value with
a maximum of 32 bits. The number assigned to the nbit variable to identify the bit to be tested must be
included between 1 and 32. If the condition indicated in status is satisfied, it jumps to label or calls
subprogramname or functionname.
For further details, see the construct IF-THEN-ELSE.

IFBLACKBOX

Syntax
IFBLACKBOX GOTO label
IFBLACKBOX CALL subprogramname
IFBLACKBOX functionname

Arguments
label name of the label to jump to
subprogramname subprogram name
functionname function name

Description
If the record is active, it jumps to label or it calls subprogramname or functionname. See also
STARTBLACKBOX, PAUSEBLACKBOX and ENDBLACKBOX.

GPL Language 205

Numeric control

IFCHANGEVEL

Syntax
IFCHANGEVEL axis [, status], GOTO label
IFCHANGEVEL axis [, status], CALL subprogramname
IFCHANGEVEL axis [, status], functionname

Arguments
axis name of axis device
status type of variation. Acceptable values are:

POSITIVE
NEGATIVE

label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests if axis speed has varied.
If the axis specified in the axis variable is subject to speed variation during movement, a jump to label or
a call to subprogramname of functionname is peformed.
The status parameter specifies if speed has increased (POSITIVE) or decreased (NEGATIVE).

IFCOUNTER

Syntax
IFCOUNTER countername, comparison operator, value, GOTO label
IFCOUNTER countername, comparison operator, value, CALL subprogramname
IFCOUNTER countername, comparison operator, value, functionname

IFCOUNTER countername, comparison operator, value THEN
instruction
instruction
…

ENDIF

IFCOUNTER countername, comparison operator, value THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
countername name of the counter
comparison operator the symbols used for comparison are:

<ì (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or countername
label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
This instruction tests the counter.
If the content of the counter defined in the countername variable satisfies the condition specified by the
comparison operator, with the value expressed in the value variable, it jumps to the label specified in
label or calls the subprogram defined in subprogramname or the function defined in functionname.
For further details, see the construct IF-THEN-ELSE.

IFDEC

Syntax
IFDEC axis, GOTO label
IFDEC axis, CALL subprogramname
IFDEC axis, functionname

Albatros206

Numeric control

Arguments
axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests if the axis defined in the axis variable is decelerating.
If the condition is confirmed, it jumps to label or calls subprogramname or functionname.

IFDIR

Syntax
IFDIR axis, direction, GOTO label
IFDIR axis, direction, CALL subprogramname
IFDIR axis, direction, functionname

IFDIR axis, direction THEN
instruction
instruction
…

ENDIF

IFDIR axis, direction THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
axis name of axis device
direction axis direction. Acceptable values are:

POSITIVE positive axis direction
NEGATIVE negative axis direction

label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests the current direction of an axis.
If the axis is moving in the direction specified in the direction variable, a jump to label or a call to
subprogramname or functionname is performed.
For further details, see the construct IF-THEN-ELSE.

IFERRAN

Syntax
IFERRAN axis, comparison operator, value, GOTO label
IFERRAN axis, comparison operator, value, CALL subprogramname
IFERRAN axis, comparison operator, value, functionname

IFERRAN axis, comparison operator, value THEN
instruction
instruction
…

ENDIF

IFERRAN axis, comparison operator, value THEN
instruction
instruction
…

ELSE
instruction
instruction

GPL Language 207

Numeric control

…
ENDIF

Arguments
axis name of axis device
comparison operator the symbols used for comparison are:

< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or countername
label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
It checks the value of the tracking error (loop error) of the axis defined in the axis variable.
If the axis loop error confirms the condition expressed by the comparison operator with the value
expressed by value, it jumps to label or calls subprogramname or functionname.
For further details, see the construct IF-THEN-ELSE.

IFERROR

Syntax
IFERROR number, IDposiz, GOTO label
IFERROR number, IDposiz, CALL label
IFERROR number, IDposiz, functionname
IFERROR devicename, status,IDposiz, GOTO label
IFERROR devicename, status,IDposiz, CALL label
IFERROR devicename, status,IDposiz, functionname

Arguments
number DEFMSG or constant or integer variable
devicename name of device
status default constant. Acceptable values are: ON, OFF
IDposiz constant or variable. Numeric value used in synoptics
label name of label to jump to
functionname name of function

Description
It tests if cycle error is enabled.
If the cycle error identified by number and IDposiz or by devicename, status and IDposiz is enabled,
it can jump to label or call the function functionname.
The parameter number can identify an error of module cycle (therefore an entire numeric value) or of
group (in this case a DEFMSG is used).
The parameter devicename is the name of a device and the parameter status represents the status
ON/OFF in which the device is located, when the error is generated.
The parameter number can identify an error of module cycle (therefore an entire numeric value) or of
group (in this case a DEFMSG is used).
The parameter devicename is the name of a device and the parameter status represents the ON/OFF
status in which the device should be found, when the error is generated.
Parameter IDposiz is an optional parameter, specifying the numeric value used in the synoptics to sort out
cicle errors in different cells. It must match the specified value in the synoptics creator for that particular
display cell. If there is no need to point out a specific cell, the predefined NOPLACE constant must be
assigned. The range of the values that can be set is included between 0 (NOPLACE) and 1023.
If the instruction is used without enabling the alarms management to status conditions, an error system is
generated.
See also instruction ERROR.

IFFLAG

Syntax
IFFLAG flagname, status, GOTO label
IFFLAG flagname, status, CALL subprogramname
IFFLAG flagname, status, functionname

IFFLAG flagname, status THEN
instruction
instruction
…

ENDIF

Albatros208

Numeric control

IFFLAG flagname, status THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
flagname name of flag device
status predefined constant. Status to be tested. Possible values are:

ON enabled
OFF disabled

label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests the logical status of a flag.
If the flag defined in the flagname variable satisfies the indicated status, it jumps to label or calls
subprogramname or functionname.
For further details, see the construct IF-THEN-ELSE.

IFINPUT

Syntax
IFINPUT inputname, status, GOTO label
IFINPUT inputname, status, CALL subprogramname
IFINPUT inputname, status, functionname

IFINPUT inputname, status THEN
instruction
instruction
…

ENDIF

IFINPUT inputname, status THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
inputname name of input
status predefined constant. Status to be verified

Acceptable values are:
- ON enabled
- OFF disabled

label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests the analog status of an input.
If the input specified in the inputname variable is in the indicated status, a jump to label or a
subprogramname or functionname call is performed.
For further details, see the construct IF-THEN-ELSE.

GPL Language 209

Numeric control

IFMESSAGE

Syntax
IFMESSAGE number, IDposiz, GOTO label
IFMESSAGE number, IDposiz, CALL label
IFMESSAGE number, IDposiz, functionname

Arguments
number DEFMSG or constant or integer variable
IDposiz constant or variable. A numeric value used in synoptics.
label name of label to jump to
functionname name of function

Description

It tests if message is enabled.
If message, identified by number and IDposiz is enabled it can jump to label or call function
functionname,
Parameter IDposiz is an optional parameter specifying the numeric value used in synoptics to sort out
cycle errors in different cells. It must correspond with the specified value in the synoptics creator for that
particular display cell. If there is no need to point out a specific cell, the predefined NOPLACE constant must
be assigned. The range of the values, that can be set is included between 0 (NOPLACE) and 1023.
If the instruction is used without enabling the alarms management to status conditions, an error system is
generated.
See also instruction MESSAGE.

IFOR

Syntax
IFOR operand1, operand2, testvalue, GOTO label
IFOR operand1, operand2, testvalue, CALL subprogramname
IFOR operand1, operand2, testvalue, functionname

IFOR operand1, operand2, testvalue THEN
instruction
instruction
…

ENDIF

IFOR operand1, operand2, testvalue THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
operand1 constant or variable or devicename
operand2 constant or variable or devicename
testvalue constant. Value used to check the result of the operation.

Possible values are:
TRUE 1
FALSE 0

label name of the label to jump to
subprogramname name of the subprogram
functionname name of the function

Description
Two comparisons are performed, the first between operand1 and operand2, the second between the
result of the first comparison and testvalue.
The first comparison consists of a binary OR between operand1 and operand2. The two operands are
interpreted as bit masks. If in the result of the binary OR at least one bit is not equal to 0, the result of the
first comparison is TRUE. This will then be compared to testvalue. If the two values coincide, a jump to
label or a call function or call subprogram is performed.
For further details, see the construct IF-THEN-ELSE.

Albatros210

Numeric control

IFOUTPUT

Syntax
IFOUTPUT outputname, status, GOTO label
IFOUTPUT outputname, status, CALL subprogramname
IFOUTPUT outputname, status, functionname

IFOUTPUT outputname, status THEN
instruction
instruction
…

ENDIF

IFOUTPUT outputname, status THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
outputname name of output
status predefined constant. Status to be verified on output

Acceptable values are:
ON enabled
OFF disabled

label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests the analog status of an output.
If the input specified in the outputname variable is in the indicated status, a jump to label or a
subprogramname or functionname call is performed.
For further details, see the construct IF-THEN-ELSE.

IFQUOTER

Syntax
IFQUOTER axis, comparison operator, value, GOTO label
IFQUOTER axis, comparison operator, value, CALL subprogramname
IFQUOTER axis, comparison operator, value, functionname

IFQUOTER axis, comparison operator, value THEN
instruction
instruction
…

ENDIF

IFQUOTER axis, comparison operator, value THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
axis name of axis device
comparison operator the symbols used for comparison are:

< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or countername
label name of the label to jump to

GPL Language 211

Numeric control

subprogramname name of subprogram
functionname name of function

Description
It tests the real position specified by the axis variable.
If the value of the axis variable complies with the condition expressed in the comparison operator with
the value specified by value, it jumps to label or calls subprogramname or functionname.
For further details, see the construct IF-THEN-ELSE.

IFQUOTET

Syntax
IFQUOTET axis, comparison operator, value, GOTO label
IFQUOTET axis, comparison operator, value, CALL subprogramname
IFQUOTET axis, comparison operator, value, functionname

IFQUOTET axis, comparison operator, value THEN
instruction
instruction
…

ENDIF

IFQUOTET axis, comparison operator, value THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
axis name of axis device
comparison operator the symbols used for comparison are:

< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or countername
label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests the theoretical position specified by the axis variable.
If the value of the axis variable complies with the condition expressed in the comparison operator with
the value specified by value, it jumps to label or calls subprogramname or functionname.
For further details, see the construct IF-THEN-ELSE.

IFRECEIVED

Syntax
IFRECEIVED [source,] identifier, GOTO label
IFRECEIVED [source,] identifier, CALL subprogramname
IFRECEIVED [source,] identifier, functionname

Arguments
source string constant
identifier string constant
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests if a RECEIVE instruction has been satisfied.
If a specified former RECEIVE was satisfied, it jumps to label or calls subprogramname or functionname.
See also instructions RECEIVE, WAITRECEIVE, SEND.

Albatros212

Numeric control

IFREG

Syntax
IFREG axis, GOTO label
IFREG axis, CALL subprogramname
IFREG axis, functionname

Arguments
axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests that the axis specified in the axis variable is in regime status.
If the condition is verified, it jumps to label or calls subprogramname or functionname.

IFSAME

Syntax
IFSAME operand1, operand2, GOTO label
IFSAME operand1, operand2, CALL subprogramname
IFSAME operand1, operand2, functionname

Arguments
operand1 variable or devicename
operand2 variable or devicename
label name of the label to jump to
subprogramname name of the subprogram
functionname name of the function

Description
Test between two operands.
It verifies if the value defined in operand1 and operand2 refer either to the same device or the same
memory area.
If the test between the two operands is confirmed, it jumps to label or calls subprogramname or
functionname.

IFSTILL

Syntax
IFSTILL axis, GOTO label
IFSTILL axis, CALL subprogramname
IFSTILL axis, functionname

Arguments
axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests if the axis defined in the axis variable is really still, that is if it is "in position".
If the condition is confirmed, it jumps to label or calls subprogramname or functionname.
See also IFTARGET and IFWIN.

IFSTR

Syntax
IFSTR string1, comparison operator, string2, GOTO label
IFSTR string1, comparison operator, string2, CALL subprogramname
IFSTR string1, comparison operator, string2, functionname

IFSTR string1, comparison operator, string2 THEN
instruction
instruction
…

ENDIF

IFSTR string1, comparison operator, string2 THEN

GPL Language 213

Numeric control

instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
string1 string variable. The first ASCII string
comparison operator the symbols used for comparison are:

< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

string2 string variable. The second ASCII string
label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
Test on ASCII strings.
If the string defined in string1 confirms the condition expressed by the comparison operator with the
string in string2, a jump to label or a subprogramname or functionname call is performed.
For further details, see the construct IF-THEN-ELSE.

IFTARGET

Syntax
IFTARGET axis, GOTO label
IFTARGET axis, CALL subprogramname
IFTARGET axis, functionname

Arguments
axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests if the axis defined in the axis variable has reached the final programmed position. Even if it has
reached the final target position, this does not necessarily mean that it has stopped, as it usually has to
recover the loop error. If the condition is confirmed, it jumps to label or calls subprogramname or
functionname.
See also IFSTILL and IFWIN.

IFTASKHOLD

Syntax
IFTASKHOLD nametask, GOTO label
IFTASKHOLD nametask, CALL subprogramname
IFTASKHOLD nametask, functionname

Arguments
nametask name of parallel task
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It checks whether the task has been interrupted (hold status).
If the nametask is on hold, a jump to label or a subprogramname or functionname call is performed.

IFTASKRUN

Syntax
IFTASKRUN nametask, GOTO label
IFTASKRUN nametask, CALL subprogramname
IFTASKRUN nametask, functionname

Albatros214

Numeric control

Arguments
nametask name of parallel task
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It checks if the task is in execution.
If the task defined in nametask is in execution, it jumps to label or calls subprogramname or
functionname.

IFTIMER

Syntax
IFTIMER nametimer, comparison operator, value, GOTO label
IFTIMER nametimer, comparison operator, value, CALL subprogramname
IFTIMER nametimer, comparison operator, value, functionname

IFTIMER nametimer, comparison operator, value THEN
instruction
instruction
…

ENDIF

IFTIMER nametimer, comparison operator, value THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
nametimer name of timer device
comparison operator the symbols used for comparison are:

< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or nametimer. The comparison value.
label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
Timer test.
If the content of the nametimer timer satisfies the condition expressed in the comparison operator with
the value expressed in value, a jump to label or a subprogramname or functionname call is performed.
For further details, see the construct IF-THEN-ELSE.

IFVEL

Syntax
IFVEL axis, comparison operator, value, GOTO label
IFVEL axis, comparison operator, value, CALL subprogramname
IFVEL axis, comparison operator, value, functionname

IFVEL axis, comparison operator, value THEN
instruction
instruction
…

ENDIF

IFVEL axis, comparison operator, value THEN
instruction
instruction
…

GPL Language 215

Numeric control

ELSE
instruction
instruction
…

ENDIF

Arguments

axis name of axis device
comparison operator the symbols used for comparison are:

< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests current speed of an axis.
If the speed of the axis confirms the condition expressed in the comparison operator with the value
expressed in value, a jump to label or a subprogramname or functionname call is performed.
For further detail, see the construct IF-THEN-ELSE.

IFWIN

Syntax
IFWIN axis, GOTO label
IFWIN axis, CALL subprogramname
IFWIN axis, functionname

Arguments
axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests if the axis specified in the axis variable has entered the quiescent threshold (see Conventions and
Terminology).
If the condition is confirmed, it jumps to label or calls subprogramname or functionname.
See also IFTARGET and IFSTILL.

IFXOR

Syntax
IFXOR operand1, operand2, testvalue, GOTO label
IFXOR operand1, operand2, testvalue, CALL subprogramname
IFXOR operand1, operand2, testvalue, functionname

IFXOR operand1, operand2, testvalue THEN
instruction
instruction
…

ENDIF

IFXOR operand1, operand2, testvalue THEN
instruction
instruction
…

ELSE
instruction
instruction
…

ENDIF

Arguments
operand1 constant or variable or devicename
operand2 constant or variable or devicename

Albatros216

Numeric control

testvalue constant. Value used to check the result of the operation. Possible values
are: TRUE 1, FALSE 0

label name of the label to jump to
subprogramname name of the subprogram
functionname name of the function

Description
Two comparisons are performed, the first between operand1 and operand2, the second between the
result of the first comparison and testvalue.
The first comparison consists in a binary XOR between operand1 and operand2. The two operands are
interpreted as bit masks. If in the result of the binary XOR at least one bit is not equal to 0, the result of
the first comparison is TRUE. This will then be compared to testvalue. If the two values coincide, a jump
to label or a call function or call subprogram is performed.
For further details see the construct IF-THEN-ELSE.

ONERRSYS

Syntax
ONERRSYS functionname

Arguments
functionname name of function

Description
It enables system error management. The normal behaviour of the control, when a system error occurs, is
to interrupt all the tasks. The system error management allows to avoid closing down the tasks for which it
has been enabled.
When a system error occurs the functionname function is sent in execution. The function's task is to
analyse the system error and carry out the necessary actions to secure the machine.

The functionname function has two limitations:
First of all, it has to accept the following parameters:
· the number of system error, as Integer number.
· the task where the error took place, as Function
· the device which generated the error, as device.
Secondly, it can not contain certain GPL instructions. See List of instructions which can not be used with
interrupt.

In the case of multiple System Errors, the function is called once for each error generated, in sequence. If
the function itself generates a System Error, all tasks are interrupted.

During the function execution, the task for which the error management was enabled stops, and it only
restarts at the end of the first function called by the ONERRSYS instruction. In particular, the task will start
again the execution by running again the instruction that was interrupted by the system error.

Example
Main Cycle with error management

ONFLAG

Syntax
ONFLAG flagname, [status,] functionname[,arguments]

Arguments
flagname name of flag device
status default constant. Status to be tested.

Possible values are:
ON enabled
OFF disabled

functionname name of function
arguments any arguments of the function

Description
It enables software interruption of the task in which it is executed, according to the status of the flag
specified. When the flag switches to the indicated status (interrupt), task execution is interrupted and the
function specified in functionname is executed. At the end of this execution the task restarts from where
it was interrupted. The function executed after the interrupt has certain limitations. Namely, not all GPL
instructions can appear in the body of the function. This limitation is necessary to avoid critical interruptions
of the GPL code or long waits. See List of instructions which can not be used with interrupt.

GPL Language 217

Numeric control

If the status argument is omitted, the function is called each time the status of the flag changes.
The test on the flag status is executed every 5ms, which means that maximum latency time, between flag
variation and execution of the function, is 5 ms.
Only one ONFLAG can be defined on the same flag.
Vectors or local matrixes can not be arguments of the function defined in functionname.
See also instructions DELONFLAG, ONINPUT, DELONINPUT.

ONINPUT

Syntax
ONINPUT nameinput, [status,] functionname [,arguments]

Arguments
nameinput name of input
status predefined constant. Status to be tested.

Possible values are:
ON enabled
OFF disabled

functionname name of function
arguments any arguments of the function

Description
It enables software interruption of the task in which it is executed, according to the status of the input
specified. When the input switches to the indicated status (interrupt), task execution is interrupted and the
function specified in functionname is executed. At the end of this execution the task restarts from where
it was interrupted. The function executed after the interrupt has certain limitations. Namely, not all GPL
instructions can appear in the body of the function. This limitation is necessary to avoid critical interruptions
of the GPL code or long waits. See List of instructions which are non-executable with interrupt.
If the status argument is omitted, the function is called each time the status of the input changes.
The test on the input status is executed every 5ms, to which 4ms of anti-rebound filter on input
management must be added. This means that latency time can reach 9 ms, before launching the function.
Only one ONINPUT can be defined on the same input.
See also instructions DELONINPUT, ONFLAG and DELONFLAG.

REPEAT/ENDREP

Syntax
REPEAT value

instruction
instruction
...

ENDREP

Arguments
value constant or variable or countername. Number of repetitions.

Description
It repeats the execution of the instructions enclosed between the REPEAT instruction and the ENDREP
instruction as many times as indicated in the value variable.
When the program reaches the ENDREP instruction, the counter of the number of repetition decreases and,
if its value is not less or equal to zero, the block of instructions is reexecuted starting from the instruction
after REPEAT. This means that the instructions are executed at least once (even if the value parameter is
naught or negative from the beginning).
When the repetitions are concluded, the instruction following ENDREP is executed.
See also instruction FOR/NEXT.

Example

; example of cycle moving an axis
; between two positions for 10 times
Function Cycleo
Repeat 10

MovAbs axis,100
waitinput switch,ON
Movabs axis,-100
Waitinput switch, OFF

EndRep
Fret

Albatros218

Numeric control

RET

Syntax
RET

Arguments
no arguments

Description
It ends the execution of a subprogram and returns to the instruction immediately after the call CALL.
See also the instruction CALL.

Note
This instruction, together with CALL, is a typical source of programming errors. We recommend taking
great care when using it, in particular we suggest positioning the subprocedures at the end of the body of
the function (after the FRET instruction) so as to avoid accidental execution of the subprocedure, as if it
were an integral part of the main code. This situation, in the best of hypothesis, generates a system error;
in other cases it causes anomalous behaviour of the machine whose origin is difficult to recognise.

SELECT

Syntax
SELECT varname

CASE value
GOTO label

CASE value1 TO value2
CALL subprogramname

CASE IS < = > value
[FCALL] functionname [parameter1,...parameterN]

CASE ELSE
GOTO label

ENDSELECT

Arguments
varname constant or integer variable or countername
value, value1, value2 integer constants
label name of label to jump to
subprogramname name of subprogram
functionname name of function
parameter1...parameterN parameter passed to the call function

Description
Multiple selection with jump to label, call to subprogramname or functionname according to the value
of the varname variable.
Each CASE (optional) can have only one GOTO, CALL or FCALL instruction.
At least one case must be included between SELECT and ENDSELECT. The latter indicates the end of the
SELECT instruction.
After each CALL or FCALL the execution of the function continues with the instruction following ENDSELECT.
The CASE-ELSE branch is executed if no previous CASE is satisfied.

Example
Axis movement server

TESTIPC

Syntax
TESTIPC IPCname, [, varname1 [, varnameN,...]], GOTO label
TESTIPC IPCname, [, varname1 [, varnameN,...]], CALL subprogramname
TESTIPC IPCname, [, varname1 [, varnameN,...]], functionname

TESTIPC IPCname, matrix[row], GOTO label
TESTIPC IPCname, matrix[row], CALL subprogramname

GPL Language 219

Numeric control

TESTIPC IPCname, matrix[row], functionname

TESTIPC IPCname, vector, GOTO label
TESTIPC IPCname, vector, CALL subprogramname
TESTIPC IPCname, vector, functionname

Arguments
IPCname string constant. Name of IPC
varname1[...varnameN] constant or variable. Names ranging from1÷N
matrix[row] constant or integer variable. Row number of matrix
vector name of vector
matrix name of matrix
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests and receives IPC commands.
When the TESTIPC instruction is executed for the first time the shared memory is allocated; the memory's
dimension is calculated on the basis of the size of sent data. The maximum shared memory dimension is 64
Kb.
A semaphore is connected to the memory to allow the synchronisation of the tasks accessing it. The task
accessing it checks if an active semaphore is present, it reads the data of the shared memory and disables
the semaphore. Immediately after, a jump to label instruction, or the function or the program described as
last parameter of the TESTIPC instruction, is executed.
See also SENDIPC and WAITIPC.

TESTMAIL

Syntax
TESTMAIL mail, [varname1 [,..varnameN]], GOTO label
TESTMAIL mail, [varname1 [,..varnameN]], CALL label
TESTMAIL mail, [varname1 [,..varnameN]], functionname
TESTMAIL mail, matrix[row], GOTO label
TESTMAIL mail, matrix[row], CALL subprogramname
TESTMAIL mail, matrix[row], functionname

Arguments
mail constant or integer variable (1÷256). Number of mailbox
varname1[...varnameN] integer variable. Names ranging from1÷20
matrix[row] constant or integer variable. Row number of matrix
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests and receives messages.
The first TESTMAIL in the mail mailbox creates the mailbox.
If the message is in the mail mailbox, the data sent with the message is saved either in the varname
variables (1÷20), if they are are indicated, or in the row of the matrix indicated by matrix[row];
moreover it jumps to label or calls subprogramname or functionname.
During execution, congruence between passed data and expected date is verified.
See also instructions SENDMAIL, WAITMAIL and ENDMAIL.

Various10.3.13

CLEARERRORS

Syntax
CLEARERRORS [IDposiz]

Arguments
IDposiz constant or variable. A numeric value used by synoptics

Description
It tells the supervisor PC to delete all the cycle errors concerning the module which is executing the
instruction, previously sent by the ERROR instruction. The IDposiz parameter is an optional parameter that
specifies the numeric value used in synoptics to sort cycle errors in different cells. It must match the value
specified in the synoptic creator for that specific display cell. Albatros uses this identifier to manage cycle

Albatros220

Numeric control

errors in separate queues. A new queue is created for each IDposiz. The range of the values that can be set
is included between 0 (NOPLACE) and 1023. If the IDposiz parameter is not specified, all the cycle errors
both in the default queue and in the possible other queues are deleted.
See also instructions ERROR and DELERROR

CLEARMESSAGES

Syntax
CLEARMESSAGES [IDposiz]

Arguments
IDposiz constant or variable. A numeric value used by synoptics

Description
It tells the supervisor PC to delete all the messages concerning the module which is executing the
instruction, previously sent by the MESSAGE instruction. The IDposiz parameter is an optional parameter
that specifies the numeric value used in synoptics to sort messages in different cells. It must match the
value specified in the synoptic creator for that specific display cell. Albatros uses this identifier to manage
messages in separate queues. A new queue is created for each IDposiz.The range of the values that can be
set is included between 0 (NOPLACE) and 1023. If the IDposiz parameter is not specified, all the messages
both in the default queue and in the possible other queues are deleted.
See also instructions MESSAGE and DELMESSAGE.

DEFMSG

Syntax
DEFMSG label [, languageprefix1], "messagestring" , … , [, languageprefixN,

"messagestring"]

Arguments
label mnemonic name of message to be displayed
languageprefix default constant. Language in which the message is written
messagestring message to be displayed. It must be written in inverted commas ("")

Description
It assigns a label to a message. The DEFMSG instruction must be declared before implementing the
functions. The definition of the message can only be used inside the file (or group) in which it is declared. It
is possible to insert messages in various languages by using the predefined constant languageprefix (as
for the list of language prefixes, please see chapter "Message Import"). In this case the MESSAGE
instruction will display the message in the language currently used by Albatros. A message that no prefix is
associated with is used when the language currently in use does not match any of the existing prefixes.
All the labels of different languages can be written on the same line or on more lines, beginning a new
paragraph each time by pressing the character "_" preceded by one space.
DEFMSG instruction can be passed as parameter to a function. In this way the function that recives it can
use it as one of the three arguments of ERROR an MESSAGE. (See example 2).
See also instructions MESSAGE, DELMESSAGE, ERROR, DELERROR.

Example 1

;assigning a message string to a label
;without language selection
DEFMSG MSG_GRU_1 "Message group 1"

;using the definition
MESSAGE MSG_GRU_1 ;display: "Message group 1"

;assigning a message string to a label with language selection
DEFMSG MSG_GRU_1 ITA "Messaggio gruppo 1"

ENG "Message group 1"

;using the definition when Albatros is set on ENG
MESSAGE MSG_GRU_1 ;display: "Message group 1"

Example 2:
In a group:
DEFMSG MSG_TEST "Execution error"

FUNCTION CallTest

GPL Language 221

Numeric control

Test MSG_TEST
FRET

In a library:
DEFMSG MSG_BASE "Error signal: $1"
…

FUNCTION Test Public
PARAM code AS integer
ERROR MSG_BASE NOPLACE NOSTORE code

FRET
; The displayed cycle error is: Error signal: Execution error

DELAY

Syntax
DELAY value

Arguments
value constant or variable. Delay expressed in seconds

Description
It waits as long as indicated in value. When time is up, the following instruction is executed. The
programmable minimum value is 4 msec. (0,004 seconds)

DELERROR

Syntax
DELERROR devicename [,status [, IDposiz [log]]
DELERROR number [, IDposiz [log]]

Arguments
devicename name of the device
number DEFMSG or constant or integer variable
IDposiz constant or variable. It is a numeric value used in synoptics
status predefined constant. It can have the following values: ON, OFF
log predefined numerical constant or integer variable. It can have the following

values: STORE error stored on file, NOSTORE error not saved on file.

Description
It tells the supervisor PC to supervise the deletion of a cycle error previously sent by the ERROR
instruction.
If the name of a device is specified, then it sends the PC the type and logic address of the device instead of
the number. For the clearance to be effective, all the values set in the parameters must coincide with those
used to generate the error. Setting the parameter log as STORE entails storing the cycle error in the error
report file of the current month. Errors saved on the report file are not eliminated from the file, but only
from the error window, while a new registration of the error deletion is added to the file.
Parameter IDposiz is an optional parameter, specifying the numeric value used in the synoptics to sort out
cicle errors in different cells. It must match the specified value in the synoptics creator for that particular
display cell. If there is no need to point out a specific cell, the predefined NOPLACE constant must be
assigned. The range of the values that can be set is included between 0 (NOPLACE) and 1023.
If cycle errors are managed like warning signals, all cancel requests are sent. If alarms are managed like
statuses, cycle error cancelling is only sent if cycle error is active, otherwise DELERROR instruction is
ignored.
See also instructions ERROR, CLEARERRORS.

DELMESSAGE

Syntax
DELMESSAGE number [, IDposiz]

Arguments
number DEFMSG or constant or variable
IDposiz constant or variable. Numeric value used in synoptics

Description
It sends to the PC a request to delete a message previously sent with a MESSAGE instruction. If messages
are managed like warning signals, all corresponding messages are cancelled. If messages are managed like

Albatros222

Numeric control

statuses, message cancelling is only sent if its status was active, otherwise DELMESSAGE instruction is
ignored.
Parameter IDposiz is an optional parameter, specifying the numeric value used in the synoptics to sort out
cicle errors in different cells. It must match the specified value in the synoptics creator for that particular
display cell. If there is no need to point out a specific cell, the predefined NOPLACE constant must be
assigned. The range of the values that can be set is included between 0 (NOPLACE) and 1023.
See also instruction MESSAGE.

ERROR

Syntax
ERROR devicename [,status [, IDposiz [, log]]]
ERROR number [, IDposiz [, log [, arg1,..., arg3]]]

Arguments
devicename name of device
number DEFMSG or constant or variable
IDposiz constant or variable. A numeric value used in synoptics.
status predefined constant. Possible values are: ON, OFF
log default numerical constant or integer variable. Possible values are:

STORE error saved to file
NOSTORE error not saved to file

arg1,…, arg3 constant or device or variable

Description
It generates a cycle error. The error is identified by the number parameter or by the name of the device.
The parameter number can identify a module cycle error (i.e. a whole number) or group cycle error (in
this case, DEFMSG applies).
If the name of a device is specified, instead of the number, it sends the PC the type and logic address of
the device. The cycle error is sent to the supervisor PC and displayed on the Albatros error bar.
The IDposiz parameter is used in synoptic views to sort cycle errors in different cells. It must match the
value specified in the synoptic creator for that specific display cell. Albatros uses this identifier to manage
cycle errors in separate queues. A new queue is created for each IDposiz. If the IDposiz parameter is not
specified or when the predefined constant NOPLACE is used, the cycle error is located in the default queue
with the value IDposiz=0. The range of the values that can be set is included between 0 (NOPLACE) and
1023.
Setting the log parameter to STORE entails the cycle error being saved in the error report file of the
current month. A high number of generated or cleared errors may put the performance level of the remote
modules at risks. In fact, the PC supervisor must control all the errors sent (and they possible clearance).
This may slow down the sending of important data to the control, particularly the processing programs.
The optional arg1,..., arg3 parameters are used to define parameter error messages. The error message's
definition string will feature markers that will be replaced – when the error is generated – with the value or
name of the device or variable passed as a parameter. Markers to be inserted in the string are as follows:
· $1,... $2: replaced with the name of the device or variable ($1 stands for arg1 etc.)
· $(1),..., $(3): replaced with the value of the device or variable.
Types of data valid for the arg1,..., arg3 parameters are as follows:
· CHAR
· INTEGER
· FLOAT
· DOUBLE (though it is automatically converted into FLOAT)
· message number (or DEFMSG label)
· device
· global or local variable
· function parameter. It can be used as function parameter the label defined by the DEFMSG instruction.
Strings, matrices and vectors cannot be used as parameters (although individual vector or matrix elements
are valid). For local variables, only the value can be decoded, not the name.
For the purpose of deleting a message with the DELERROR instruction, the arg1,...arg3 parameters are
disregarded.

Two error management modes are defined and established by manufacturer of the machine:
Alarms managed like warning signals: all cycle errors are sent. Albatros keeps a queue of the last 100
errors of the specified queue and the last 100 errors of the default queue.
Alarms managed like statuses: error is considered active or inactive. If active, any further sending of
the same cycle error (by ERROR instruction) is ignored.

See also instructions DELERROR, CLEARERRORS.

Example 1

GPL Language 223

Numeric control

DEFMSG ERR_TOOL "Tool missing"
DEFMSG ERR_TOOL_P "Load tool $(1) in slot $(2)"

; tag for synoptic views
CONST TOOLCHANGE = 5

; error shown in the Errors Bar or in not tagged sinoptic views' cells
ERROR ERR_TOOL

; error saved in report file and shown in synoptic views' cells tagged
; with code 5
ERROR ERR_TOOL, TOOLCHANGE, STORE

; error saved in report file but not dispatched to tagged synoptic
; views'cell
ERROR ERR_TOOL, NOPLACE, STORE

; error with parameters
ERROR ERR_TOOL_P, NOPLACE, NOSTORE, MxTools[3].Cod, 5

Example 2
; defined in a group
DEFMSG MSG_ERR_CARICO "Error on loading tool"

Function ShowMessage
MsgTool MSG_ERR_CARICO MxTools[3].Cod

fret

Function ShowError
ErrTool STORE MSG_ERR_CARICO MxTools[3].Cod

Fret

; defined in a library
DEFMSG MSG_ERR_TOOL "Error tool: $1 $(2)"

Function MsgTool public
PARAM parameter1 as integer
PARAM parameter2 as integer

MESSAGE MSG_ERR_TOOL NOPLACE parameter1 parameter2
fret

Function ErrTool public
PARAM log as integer
PARAM argument1 as integer
PARAM argument2 as integer

ERROR MSG_ERR_TOOL NOPLACE log argument1 argument2
fret

IFDEF/ELSEDEF/ENDDEF

Syntax
IFDEF constant

instruction
…

ENDDEF

IFDEF constant, comparison operator, value
instruction
…

ENDDEF

IFDEF EXIST, namegroup
instruction

Albatros224

Numeric control

…
ENDDEF

IFDEF LINKED, devicename
instruction
…

ENDDEF

IFDEF UNLINKED, devicename
instruction
…

ENDDEF

IFDEF constant, comparison operator, value
instruction
…

ELSEDEF
instruction
…

ENDDEF

Arguments
constant integer, char, double, string constant
varname integer, char, double or string constant
comparison operator the symbols used for comparison are:

< (smaller than) = (equal to)
> (greater than) =< (equal to or smaller than)
>= (greater than or equal to) <> (different from)

value constant or name of device
namegroup name constant or name of group
devicename string constant or device name

Description
The conditional compilation allows to check which parts of a GPL function file must be compiled and
executed. The compiler verifies that the condition requested as argument of the IFDEF instruction is
satisfied. In this case it compiles the code included between the IFDEF instruction and the ENDDEF or
ELSEDEF instruction. If an ELSEDEF instruction exists, and the condition is not satisfied, it will compile the
code included between the ELSEDEF instruction and the ENDDEF instruction.
The compilation condition can be expressed in some different ways:
· a constant is specified after the IFDEF instruction. In this case the condition is satisfied if a global

constant or a constant of the existing group with the specified name exists.
· A relation between two operators and an operand is specified after the IFDEF instruction. The first

operand must be a constant. In this case the condition is satisfied if the relation is true (for ex.
MAX_TOOLS = 100).

· The keywords EXIST or NOTEXIST, followed by the name of a machine group or by a string containing
the name of a machine group or the name of a library, are specified after the IFDEF instruction. In this
case the condition is satisfied if a group with the same name exists or does not exist in the Machine
Configuration.

· After the IFDEF instruction LINKED or UNLINKED key word followed by the name of a device is specified.
In this case the condition is verified, if the device is connected (LINKED) or not connected (UNLINKED) in
virtual-physical. The device name can be expressed under this form:
Group_Name.Subgroup_Name.Device_Name or Group_Name.Device_Name or
Subgroup_Name_DeviceName or Device_Name. If the device does not exist in the configuration it is
considered not connected.

It is possible to set more IFDEF instructions, remembering that each IFDEF instruction must correspond to
an ENDEF instruction.

Example 1
; GPL code execution changes if the FRESA group is present in the machine
Const FresaGroup = "Fresa"
IFDEF Exist FresaGroup
instruction
instruction

ELSEDEF
instruction
instruction

ENDDEF

Example 2

GPL Language 225

Numeric control

; GPL code execution changes according to the module
IFDEF _ID_MODULE = 1 ; compile instruction for module 1
instruction
instruction

ELSEDEF ; compile instruction for the other
modules

instruction
instruction

ENDDEF

; compile code for the 3.2.0 version of Albatros

IFDEF _VER_MAJOR = 3
IFDEF _VER_MINOR = 2

IFDEF _VER_REVISION = 0
instruction
instruction

ENDDEF
ENDDEF

ENDDEF

; compile code for the service pack 10 version of Albatros
IFDEF _VER_SP = "Service Pack 10"
instruction

ENDDEF

; compile code only if the system is configured for a remote module
IFDEF _REMOTE_MODULE = 1 ; 1 = remote module, otherwise 0 = local

module
instruction

ENDDEF

; compile code for the 2.4 version service pack 10 Albatros
IFDEF _VER_FULL = $0002040AH
instruction

ENDDEF

Example 3
; the execution of the GPL code changes
; if the device is connected in virtual-physical
IFDEF LINKED out1 ; if Out1 is connected, the code is

executed
instruction
instruction
instruction

ENDIF

MESSAGE

Syntax
MESSAGE number [, IDposiz [, arg1,..., arg3]]

Arguments
number constant or variable
IDposiz constant or variable. Numeric value used in synoptics.
arg1,..., arg3 constant or device or variable.

Description
It generates a message for the operator. The message is identified by the parameter number. The
parameter number can identify a module (i.e. an integer number) or group message (in this case, DEFMSG
applies. An argument, indicated by IDposiz, can also be optionally passed. It indicates in which synoptic
window the message should be displayed. It must correspond to the value specified in the synoptic creator
for that specific display cell. Albatros uses this identifier to handle messages in separate queues. A new
queue is created for each IDposiz. If the IDposiz parameter is not specified, the message is set in the
default queue (IDposiz=0). The range of values that can be set is included between 0 (NOPLACE) and
1023.

Albatros226

Numeric control

The optional arg1,..., arg3 parameters are used to define parameter messages. The message's definition
string will feature markers that will be replaced - when the message is generated - with the value or name
of the device or variable passed as a parameter. The markers to be inserted in the string are as follows:
· $1,... $2 replaced with the name of the device or variable ($1 stands for arg1 etc.)
· $(1),..., $(3) replaced with the value of the device or variable.
Types of data valid for the arg1,..., arg3 parameters are as follows:
· CHAR
· INTEGER
· FLOAT
· DOUBLE (though it is automatically converted into FLOAT)
· message number (or DEFMSG label)
· device
· global or local variable
· function parameter. It can be used as function parameter the label defined by the DEFMSG instruction.

Two error management modes are defined and established by manufacturer of the machine:
Messages managed like warning signals: all messages are sent. Albatros keeps a queue of the last 100
messages of the specified queue and the last 100 errors of the default queue. When the message queue is
full it overwrites the oldest message. If the previous message is identical to the one to be sent, the
message is not sent (same task, same number, same argument).
Messages managed like statuses: message is considered active or inactive. If active, any further
sending of the same message (by MESSAGE instruction) is ignored..

Strings, matrices and vectors cannot be used as parameters (although individual vector or matrix elements
are valid). For local variables, only the value can be decoded, not the name.
For the purpose of deleting a message with the DELMESSAGE instruction, the arg1,...arg3 parameters are
disregarded.
See also instructions DELMESSAGE and CLEARMESSAGES.

Example 1

DEFMSG MSG_TOOL "Change the tool"
DEFMSG MSG_TOOL_P "Tool number $(1) loaded"

; tag for synoptic views
CONST TOOLCHANGE = 7

; message shown in the Errors Bar or in not tagged sinoptic views' cells
MESSAGE MSG_TOOL

; message shown in the Errors Bar and in sinoptic views' cells
; tagged with code 7
MESSAGE MSG_TOOL, TOOLCHANGE

; message with parameters
MESSAGE MSG_TOOL_P, NOPLACE, MxTools[3].Cod

Example 2

; defined in a group
DEFMSG MSG_CARICO "loading"

Function ShowMessage
MsgTool MSG_CARICO MxTools[3].Cod

fret

; defined in a library
DEFMSG MSG_TOOL "Tool: $(1) $2"

Function MsgTool public
PARAM parameter1 as integer
PARAM parameter2 as integer

MESSAGE MSG_TOOL NOPLACE parameter1 parameter2
fret

GPL Language 227

Numeric control

SYSFAULT

Syntax
SYSFAULT

Arguments
no arguments

Description
It disables the SYSOK signal.
This signal is disabled to indicate that the machine is not secured (for ex. the GPL that manage
emergencies are not in execution).
See also instruction SYSOK.

SYSOK

Syntax
SYSOK [nameoutput1 [, … nameoutput8]]

Arguments
nameoutput1
[,...nameoutput8] name of digital output device

Description
Indicates to the numerical control which are the outputs are connected to the safety circuits of the machine
(it can be an output connected to a safety relay, which controls the power supply of the machine). The
outputs are activated when the numeric control has completed the machine booting and has activated all
emergency management tasks. At this stage the machine can be considered safe. You can define no more
than 8 digital outputs. On each remote you can enable one only output. The list of the outputs declared in
the first use of SYSOK instruction cannot be changed during the possible next sysok calls, until the control
has been initialized.
If the instruction is executed without parameters, the signal of SYSOK is restored.

See also instruction SYSFAULT.

Note
The SYSYOK instruction can only be enabled:
· on all the GreenBus v3.0 remote modules with digital outputs;
· on the TRS-IO - v4.0-GreenBus remote modules;
· on the TRS-CAT remote modules, on the base only and not on the expansions, whose firmware version is

1.2 or higher (1.00 revision of the remote module)

TYPEOF

Syntax
TYPEOF name, result

Arguments
name name of device, constant, functionname, variable, vector, matrix or matrix

row
result integer variable. Type of the first argument

Description
It returns the name type argument to the result variable.

WATCHDOG

Syntax
WATCHDOG status

Arguments
status predefined constant. Acceptable values are: ON, OFF

Description
This instruction enables the use of the watchdog connected to the TMSWD-Hardware. It allows to identify
error situations occurring while executing the GPL code.

Albatros228

Numeric control

The first time this instruction is executed with the status parameter at ON, it enables the use of the
watchdog.
The following times you always should assign ON to the status parameter to upgrade the counter of the
board.
If you do not upgrade, the watchdog starts and the TMSWD deactivates the emergency exit of the machine.
To finish the use of Watchdog, assign OFF to the parameter status.

This instruction can only be used with TMSbus+, TMSCan+ and TMSCombo+ boards with FPGA 2.0 or
higher and mounted TMSWD hardware module.

Example

Function TestWatchDog autorun

watchdog ON ; enables the watchdog management

loop:

watchdog ON ; upgrades the counter of the board

goto loop

fret

MECHATROLINK-II10.3.14

MECCOMMAND

Syntax
MECCOMMAND axis,command,parameters,reply,error

Arguments
axis name of digital axis device
command integer constant.
parameters integer array.
reply integer array
error integer variable. Error code

Description
It sends to indicated axis activation a command and waits for the reply. Necessary data for the execution
of the command are inserted into parameters vector, while returned data from the execution of the
instruction are stored into the reply vector. Parameter and reply vector must have the same size and the
maximum number of elements must be 14. The consider value is the lowest byte of single integer. The
error parameter contains the codes of eventual errors generated during the operation.
The error codes should be handled by Gpl as cycle errors.
The returned error codes are:
Error
Codes

Message

-40 Command not allowed in the current functioning conditions
-41 Timeout error during the execution of a MECHATROLINK-II command
-44 Timeout error during the execution of a MECHATROLINK-II subcommand
-45 Link error of the drive
For the values that must be assigned to parameters command, parameters, reply and error see
Yaskawa MECHATROLINK-II official documentation, where the values to be allocated to the command are
described in the index 2 up to the index 15. The values to be set to the subcommands are described in the
index 18 up to the index 32.
Commands can be distinguished in the following way:
· command. They have code includes between 0x00 and 0xFF. Because of safety reasons they are

executed only if servo axis is enabled.
· subcommand. The commands used as subcommands must add to documented value the code 0x100. For

example the command NOP has documented code 0x00, used as subcommand is 0x100.
· procedure. The commands used as procedures have command with value starting from 0x200. Currently

those procedures are contemplated:
· $201H enabling procedure for offline parameters (to use with disenabled axis)

This instruction can only be used with AlbMech, DualMech and DualMech Mono boards. For further
information about the use of this instruction contact TPA.

Note
This instruction acts on the actions of digital axes and it should be used in controlled context.

GPL Language 229

Numeric control

MECGETPARAM

Syntax
MECGETPARAM axis,parameter,dimension,data,error

Arguments
axis name of digital axis device
parameter constant or integer variable
dimension constant or integer variable
data integer variable
error integer variable. Error code

Description
It reads a parameter of the activation of indicated axis and it stores the parameter into data variable. The
error parameter contains the codes of the possible errors generated during the operation. The error codes
should be handled by Gpl as cycle errors.
The returned error codes are:
Error Codes Message
-40 Command not allowed in the current functioning conditions
-41 Timeout error during the execution of a MECHATROLINK-II command
-44 Timeout error during the execution of a MECHATROLINK-II subcommand
-45 Link error of the drive
For the values that must be assigned to parameter and dimension variables see Yaskawa
MECHATROLINK-II official documentation.
This instruction can only be used with AlbMech, DualMech and DualMech Mono boards. For further
information about the use of this instruction contact TPA.

MECGETSTATUS

Sintax
MECGETSTATUS axis,status,inout,error

Arguments
axis name of digital axis device
status constant or integer variable
inout constant or integer variable
error integer variable. Error code

Description
It reads and stores the value of STATUS and ALARM into status variable and the value of IO_MON relative
to specified axis into inout variable. For the values of STATUS, ALARM, IO_MON see Yaskawa
MECHATROLINK-II official documentation.
The error parameter contains the codes of the possible errors generated during the operation. The error
codes should be handled by Gpl as cycle errors.
The returned error codes are:
Error Code Message
-40 Command not allowed in the current functioning conditions
-41 Timeout error during the execution of a MECHATROLINK-II command
-44 Timeout error during the execution of a MECHATROLINK-II subcommand
-45 Link error of the drive
A sequence of error categories is defined. The category that represents the value of the highest nibble of
ALARM.
into one of following categories 0x30,0x70,0xD0,0xF0 must be sent a command of CLEAR (0x06). Alarms
that are included into one of following categories 0x00,0x10,0x40,0xB0 can’t be deleted with a command.
It is necessary to solve the problem that creates the alarm, turn out the servodriver and switch it on again.
The structure of variables status and inout is a mask of bit structured as in the following representation:

Albatros230

Numeric control

Meaning of STATUS bits

Bit Command Physical pins that can be connected in
Virtual-Physical

1 ALM (Alarm) Digital input

2 WARNG (Warning) Digital input

3 CMDRDY (Command Ready)

4 SVON (Servo ON) Digital output

5 PON (Main Power ON) Digital input

6 Reserved

7 ZPOINT (Zero Point)

8 PSET (Position Complete)
V_CMP (Velocity Agreement)

9 DEN (Command Distribution Completed Flag)
ZSPD (Zero Velocity)

10 T_LIM (Torque Limit)

11 L_CMP (Latch Completed)

12 NEAR (Position Proximity)
V_LIM (Velocity Limit)

13 P-SOT (Forward-direction Software Limit)

14 N-SOT (Reverse-direction Software Limit)

15 Rerserved

16 Reserved

Meaning of IO_MON bits

Bit Command Physical pins that can be connected in
Virtual-Physical

1 P_OT (Forward Over Travel)

2 N_OT (Reverse Over Travel)

3 DEC (Deceleration Limit Switch)

4 PA (Phase A)

5 PB (Phase B)

6 PC (Phase C) Digital input

GPL Language 231

Numeric control

7 EXT1 (First external latch input) Digital input

8 EXT2 (Second external latch input) Digital input

9 EXT3 (Third external latch input)

10 BRK (Brake output)

11

12

13 IN1 (General-purpose input 1)

14 IN2 (General-purpose input 2)

15 IN3 (General-purpose input 3)

16 IN4 (General-purpose input 4)

This instruction can only be used with AlbMech, DualMech and DualMech Mono boards. For further information
about the use of this instruction contact TPA.

MECSETPARAM

Syntax
MECSETPARAM axis,parameter,dimension,data,error

Arguments
axis name of digital axis device
parameter constant or integer variable
dimension constant or integer variable
data integer variable
error integer variable. Error code

Description
It writes a data into the parameter of indicated axis.
For the values that must be assigned to parameter and dimension variables see Yaskawa
MECHATROLINK-II official documentation. The error parameter contains the codes of the possible errors
generated during the operation. The error codes should be handled by Gpl as cycle errors.
The returned error codes are:
Error Code Message
-40 Command not allowed in the current functioning conditions
-41 Timeout error during the execution of a MECHATROLINK-II command
-44 Timeout error during the execution of a MECHATROLINK-II subcommand
-45 Link error of the drive
This instruction can only be used with AlbMech, DualMech and DualMech Mono boards. For further
information about the use of this instruction contact TPA.

Note
This instruction acts on the actions of digital axes and it should be used in controlled context. To
input data into into the non-volatile memory the instruction MECCOMMAND is to be used.

Standard fieldbus10.3.15

AXCONTROL

Syntax
AXCONTROL axis, data

Arguments
axis device name of axis type
data variable or integer constant. it sets the ControlWord

Description
It sets the ControlWord data, in conformity with the functioning operativity, according to "CiA 402
CANopen device profile".

EtherCAT value definition table

Albatros232

Numeric control

Bit Meaning Name in virtual-
physical

1 so=Switch ON CW1

2 ev=Enable voltage EV

3 qs=Quick stop STOP

4 eo=Enable operation SVON

5 oms=Operation mode specific CW5

6 oms=Operation mode specific CW6

7 oms=Operation mode specific CW7

8 fr=Fault reset RESALM

9 h=Halt CW9

10 oms=Operation mode specific CW10

11 r=Reserved CW11

12 ms=Manufacturer specific CW12

13 ms=Manufacturer specific CW13

14 ms=Manufacturer specific CW14

15 ms=Manufacturer specific CW15

16 ms=Manufacturer specific CW16

Table to define the values for S-CAN

Bit Meaning Name in virtual-
physical

1 Ten_cmd=torque enable command
1:torque axis
0:free axis

SVON

2 Ien_cmd=movement enable command
1:enabled movements
0:axis stall

ENMOVE

3 Stp_cmd=stop command
1:active stop command
0:non-active command stop

STOP

4 Alm_rst= alarm status
1:alarm command reset

RESALM

5 Ltc_rst: reset bit 5 of StatusWord CW5

6 oms=selected mode specific CW6

GPL Language 233

Numeric control

7 oms=selected mode specific CW7

8 oms=selected mode specific CW8

AXSTATUS

Syntax
AXSTATUS axis, value

Arguments
axis device name of axis type
value integer variable

Description
It return the value in the StatusWord in accordance with "CiA 402 CANopen device profile".

EtherCAT value definition table

Bit Meaning Name in virtual-
physical

1 rtso=Ready to switch on RTSO

2 so=Switched on SW2

3 oe=Operation enabled OE

4 f=Fault ALM

5 ve=Voltage enable VE

6 qs=Quick stop QS

7 sod=Switch on disabled SOD

8 w=Warning WARNG

9 ms=Manufacturer specific SW9

10 rm=Remote SW10

11 tr=Target reached or reserved SW11

12 ila=Internal limit active SW12

13 oms=Operation mode specific SW13

14 oms=Operation mode specific SW14

15 ms=Manufacturer specific SW15

16 ms=Manufacturer specific SW16

S-CAN value definition table

Albatros234

Numeric control

Bit Meaning Name in virtual-
physical

1 Ten_st=torque enable status
1:torque axis
0:free axis

SW1

2 Ien_st=movements enable status
1:enabled movements
0:axis stall

SW2

3 Stp_st=stop status
1:running stop ramp
0:stop is not activated or ramp finished

SW3

4 Alm_st=alarm status
1:alarmed machine
0:no alarm detected

ALM

5 Ltc_st=Position latch status
1:position latch executed, register ready to read
0:no position latch detected

SW5

6 oms=operation mode specific SW6

7 oms=operation mode specific SW7

8 oms=operation mode specific SW8

CNBYDEVICE

Syntax
CNBYDEVICE device, board,cn

Arguments
device device name
board integer variable. Board number returned
cn integer variable. Node number returned

Description
Returns board number and node number of the device defined in the device parameter. This instruction
can be used for instructions without direct connections to devices, as, for instance READDICTIONARY and
WRITEDICTIONARY.
The instruction can be used for devices configured upon CAN, S-CAN, Greenbus or EtherCAT buses.
If the returned node number is a negative value, it means that the node is disabled.

READDICTIONARY

Syntax
READDICTIONARY board,cn,index,subindex,dimdata,data,err

Arguments
board constant or integer variable. Board number
cn constant or integer variable. Node number
index constant or integer variable. Object's index in the dictionary
subindex constant or integer variable. Object's subindex in the dictionary
dimdata integer variable. Dimension of the read data
data char variable, integer, float,double,char vector,string. Variable receiving the

data
err integer variable. Error code returned by node

Description
It reads the content of an objects' dictionary object, contained in node. The instruction enables to read by
means of the SDO protocol all the objects defined in accordance with "CiA 402 CANopen device profile"
beside all the other objects made available by the node manufacturer. To know the measning of the index,
subindex and dimdata parameter, reference is made to "CiA 402 CANopen device profile" or to the
specifications of the node manufacturer. For the S-CAN devices the sub-index parameter must always be
set to zero.

GPL Language 235

Numeric control

WRITEDICTIONARY

Syntax
WRITEDICTIONARY board,cn,index,subindex,dimdata,data,err

Arguments
board constant or integer variable. Board number
cn constant or integer variable. Node number
index constant or integer variable. Object's index in the dictionary
subindex constant or integer variable. Object's subindex in the dictionary
dimdata constant or integer variable. Dimension of the data to write
data char variable, integer,float,double,char vector,string. Variable containing the

data
err integer variable. Error code returned by node

Description
It writes the content of an objects' dictionary object, contained in node. The instruction enables to read by
means of the SDO protocol all the objects defined in accordance with "CiA 402 CANopen device profile"
beside all the other objects made available by the node manufacturer. To know the meaning of the index,
subindex and dimdata parameter, reference is made to "CiA 402 CANopen device profile" or to the
specifications of the node manufacturer. For the S-CAN devices the sub-index parameter must always be
set to zero.

EtherCAT10.3.16

ACTIVATEMODE

Syntax
ACTIVATEMODE axis, data, err

Arguments
axis device name of axis type
data constant or integer variable. Operating mode
err integer variable. Error code not returned by the servocontrol

Description
Sets the operating mode defined in the data variable according to "CiA 402 CANopen device profile". The
operating mode of the starting axis corresponds to the data value = 9, that is "Synchronous speed
configuration". The instruction returns err= 0 value, if the command succeeded, otherwise it returns an
error code.
Given below, the table of the values to assign to data to choose the operating mode.

Value Definition

+6 Homing mode

+9 Cyclic sync velocity mode

ECATGETREGISTER

Syntax
ECATGETREGISTER node, address, dim, data, error

Arguments
node constant or integer variable. Position held by the slave in the EtherCAT chain

(from 1 onwards)
address constant or integer variable. Address of the ESC register (EtherCAT Slave

Controller) to read (from 0 onwards)
dim constant or integer variable. Number of bytes to read (1, 2 or 4)
data integer variable. Container of the read data
error variable integer. Error code

Description
Returns [data] the register contents of the ESC (EtherCAT Slave Controller) for the indicated EtherCAT
node. The error parameter will contain the numerical code of the error, 0 if no errors have occurred.

ECATSETREGISTER

Syntax
ECATSETREGISTER node, address, dim, data, error

Arguments

Albatros236

Numeric control

node constant or integer variable. Position held by the slave in the EtherCAT
chain (from 1 onwards)
address constant or integer variable. Address of the ESC register (EtherCAT Slave
Controller) to write (from 0 onwards)
dim constant or integer variable. Number of bytes to write (1, 2 or 4)
data constant or integer variable. Data to be written
error variable integer. Error code

Description
This instruction writes the content [data] of a register of the ESC (EtherCAT Slave Controller) for the

indicated EtherCAT node. The error parameter will contain the numerical code of the error, 0 if no errors

have occurred.

GETPDO

Syntax
GETPDO board,node,nPDO,nObj,data,[error]

Arguments
board constant or variable integer. Board number
node constant or variable integer. Position helt by the slave in the EtherCAT chain

(from 1 on)
nPDO constant or variable integer. PDO identifier (ex, $1600h) or position of the

same in the list of configured PDO defined in the hardware configuration for
the node in question (from 1 to 8)

nObj constant or variable integer. Object identifier (ex. $6040h) or position of the
same within the list of object configured in the PDO (from 1 to 8)

data variable integer. It receives the value.
error variable integer. Error code

Description
It returns in [data] the content of an object exchanged through the PDOs configured for the EtherCAT
node. If the passed arguments are wrong and if the error, parameter has not been set, a system error is
generated. If an error parameter has been set, this will contain the numeric code for the corresponding
system error.

SETEOE

Syntax
SETEOE status,[error]

Arguments
status predefined constant. acceptable values are:

- ON enables the management of the EoE protocol
- OFF deactivates the management of the EoE protocol

error variable integer. Error code

Description
This instruction allows to activate and deactivate the management of the EoE protocol (Ethernet over
EtherCAT). This functionality uses the SnifferCE or SnifferRTX auxiliary software managing the EoE
communication between numerical control and PC supervisor. The error variable can accept following
values:
0 if Albatros command was properly executed
-1 if the command has not been terminated within the maximum time of 5 seconds
-2 if a communication error occurred

SETPDO

Syntax
SETPDO board,node,nPDO,nObj,data,[error]

Arguments
board constant or variable integer. Board number)
node constant or variable integer. Position helt by the slave in the EtherCAT chain

(from 1 on)
nPDO constant or variable integer. PDO identifier (ex, $1600h) or position of the

same in the list of configured PDO defined in the hardware configuration for
the node in question (from 1 to 8)

nObj constant or variable integer. Object identifier (ex. $6040h) or position of the
same within the list of object configured in the PDO (from 1 to 8)

data variable integer. Set value

GPL Language 237

Numeric control

error variable integer. Error code

Description
It sets the content [data] of an object exchanged through the PDOs configured for the EtherCAT node. If
the passed arguments are wrong and if the error, parameter has not been set, a system error is
generated. If an error parameter has been set, this will contain the numeric code for the corresponding
system error.

TMSBus boards with CAN control10.3.17

GETCNSTATE

Syntax
GETCNSTATE board, node, status

Arguments
board constant or variable integer. Board number
node constant or variable integer. Number of the node
status constant or variable integer.

Description
It returns the status of the NMT protocol for the node of the board as shown. For further information on
the meaning of these parameters, please the documentation of the single device

GETSDOERROR

Syntax
GETSDOSERROR board, error

Arguments
Board constant or variable integer. Board number (from 1 to 4)
Error variable integer. Error code

Description
It returns the last error occurred, referred to the SDO communication for the board as shown. For further
information on the meaning of these parameters, please read the documentation of the single device.

GETMNSTATE

Syntax
GETMNSTATE board, status

Arguments
board constant or variable integer. Board number (from 1 to 4)
status constant or variable integer.

Description
It returns the status of the NMT protocol for the master node of the board as shown. For further
information on the meaning of these parameters, please read the documentation of the single device.

RECEIVEPDO

Syntax
RECEIVEPDO board, node, PDOnumber

Arguments
board constant or variable integer. Board number (1 to 4)
node constant or variable integer. Number of the node
PDOnumber constant or variable integer. Number of the PDO

Description
It reads the PDO content specified from PDOnumber for the mentioned node. This instruction is used to
read the asynchronous PDOs (i.e. those PDOs that in the hardware configuration have the Asynchronous
option activated).
The read data are copied in the devices connected to the virtual-physical device.
This instruction can only be used with TMSCan and TMSCan+ boards.

Albatros238

Numeric control

SENDPDO

Syntax
SENDPDO board, node, PDOnumber

Arguments
board constant or variable integer. Number of the board
node constant or variable integer. Number of the node
PDOnumber constant or variable integer. PDO number

Description
It writes the specified PDO content from PDOnumber for the mentioned node. This instruction is
used to write the asynchronous PDOs (i.e. those PDOs that in the hardware configuration have the
Asynchronous option enabled).
This instruction can only be used with TMSCan and TMSCan+ boards.

SETNMTSTATE

Syntax
SETNMTSTATE board, node, status

Arguments
board constant or variable integer. Board number (from 1 to 4)
node constant or variable integer. Number of the node
status constant or variable integer

Description
It sets the status of the NMT protocol for the node of the board shown. If the value of the node is equal to
0 (zero) or higher than 126, setting is applied to all the existing and configured nodes on the channel. For
further information about the meaning of these parameters, make reference directly the documentation
concerning each single device.

Value Protocol status

1 Operational

128 Pre-Operational

Simulation10.3.18

DISABLE

Syntax
DISABLE axis1,[…axis6]

Arguments
axis1…[…axis6] name of axis devices

Description
It disables the specified axes. This allows to carry out simulations of the machine cyclic without physically
moving the axes. A disabled axis can not read the information coming from the encoder but simulates a
loop error proportionally to current speed. Disabling the axis, however, does not disable the speed
reference, implying that power on the axes connector will not equal zero during simulated movements. For
this reason it is necessary to disconnect the controls from the power supply or from the axis board during
simulated movements, that is when axes are disabled. See also ENABLE.

Note
Stepper axes can be used in this instruction only if they are controlled by a TRS-AX remote.

DISABLEFORCEDINPUT

Syntax
DISABLEFORCEDINPUT

Arguments
no arguments

GPL Language 239

Numeric control

Description
It disables the possibility of using functions to force the inputs. If any inputs have been previously forced,
executing this instruction resets the real status. See also ENABLEFORCEDINPUT, DISABLEFORCEDINPUT,
SETFORCEDINPUT,RESETFORCEDINPUT, SETFORCEDPORT, SETFORCEDANALOG.

ENABLE

Syntax
ENABLE axis1,[...axis6]

Arguments
axis1...[...axis6] name of axis devices

Description
It enables the specified axes. The axes are always enabled in the initialization phase. This instruction is only
called if the axes were previously disabled by a DISABLE instruction.

Note
Stepper axes can be used in this instruction only if they are controlled by a TRS-AX remote.

ENABLEFORCEDINPUT

Syntax
ENABLEFORCEDINPUT

Arguments
no arguments

Description
It enables input forcing. Before using instructions to enable or disable forced input devices, it is necessary
to execute this instruction. Otherwise the input forcing instructions have no effect.
See also DISABLEFORCEDINPUT, SETFORCEDINPUT,RESETFORCEDINPUT, SETFORCEDPORT,
SETFORCEDANALOG.

RESETFORCEDINPUT

Syntax
RESETFORCEDINPUT nameinput

Arguments
nameinput name of digital input

Description
It forces to OFF the input specified in nameinput.
To use this instruction it is necessary to have already enabled input forcing, with the ENABLEFORCEDINPUT
instruction.
See also DISABLEFORCEDINPUT, SETFORCEDINPUT, SETFORCEDPORT, SETFORCEDANALOG.

SETFORCEDANALOG

Syntax
SETFORCEDANALOG analoginput, value

Arguments
analoginput name of analog input device
variable constant or integer or float or double variable

Description
It forces the value of the analog input specified in analoginput.
To use this instruction it is necessary to have first enabled input forcing, using the ENABLEFORCEDINPUT
instruction.
See also, DISABLEFORCEDINPUT, SETFORCEDINPUT,RESETFORCEDINPUT, SETFORCEDPORT.

Albatros240

Numeric control

SETFORCEDINPUT

Syntax
SETFORCEDINPUT nameinput

Arguments
nameinput name of digital input

Description
It forces to ON the input specified in nameinput.
To use this instruction it is necessary to have first enabled input forcing, using the ENABLEFORCEDINPUT
instruction.
See also DISABLEFORCEDINPUT, RESETFORCEDINPUT, SETFORCEDPORT, SETFORCEDANALOG.

SETFORCEDPORT

Syntax
SETFORCEDPORT portname, value

Arguments
portname name of input port device
variable constant or integer or char variable

Description
It forces the value in the input port indicated by portname. The input port is interpreted as a bit mask. If a
bit equals 1, the relative input is forced to "ON".
To use this instruction it is necessary to have already enabled input forcing, with the ENABLEFORCEDINPUT
instruction.
See also DISABLEFORCEDINPUT, SETFORCEDINPUT,RESETFORCEDINPUT, SETFORCEDANALOG.

Blackbox10.3.19

The purpose of the "BlackBox" functionality is to record in a database all the activities of a machine, that is a

local or a remote module. The" activity of a machine" is the variation over time of a subgroup of all logic

devices that can be used in GPL. This is the way to analyse afterwards the behaviour of the machine, linking

the statuses of the stored devices. The database has a table containing a temporal information and the status

of all devices in that time, one for each column. In the GPL language new instructions have been introduces to

start, and query for the recording activity and are described later.

Each file of blackbox is a SQLite database and it contains information concerning one only module. The file

name includes the number of the module, the date and the time of the recording start.

Records are added in the database in a transactional manner. Each transaction contains at the most the

records generated in 1 second. In the event of a power failure the coherence of the file is guaranteed and the

last transaction can be lost. The maximum duration of the transaction can be modified by an entry in TPA.ini

(for further information, please contact TPA).

A limit of 12 hours to the duration of the recording has been inserted. This means that each database will

always contain only the last 12 hours of recording. During the recording the most ancient records are removed

from the database. The maximum duration of the history recorded in the database can be modified by an entry

in TPA.ini (for further information, please contact TPA).

This functionality is available for physical devices on GreenBUS, EtherCAT, CAN, S-CAN and MECHATROLINK-II

buses, connected through TMSbus, TMSbus+, TMScan, TMScan+, DualMech, DualMech Mono and AlbMech.

ENDBLACKBOX

Syntax
ENDBLACKBOX

Description
It ends the record on file functionality for all the activity of a local and remote module. See also
STARTBLACKBOX and PAUSEBLACKBOX.

GPL Language 241

Numeric control

PAUSEBLACKBOX

Syntax
PAUSEBLACKBOX

Description
It pauses the file logging functionality of all the activity of a local or remote module. To resume the
recording you need to carry out the instruction STARTBLACKBOX instruction without arguments. See also
ENDBLACKBOX.

STARTBLACKBOX

Syntax
STARTBLACKBOX [value][,error]

Arguments
value constant or variable integer. Recording period
error variable integer. Error code

Description
It activates the file recording functionality of all the activity of a local or remote module. The activity of a
module is the variation over time of the status of the logic devices excluding the flag switch.
Recording period (value) is expressed in milliseconds. It cannot be less than 10 and it must be a multiple
of the real-time period. Otherwise, the system error no. 4399 (Parameter out of range) would be
generated.
If the instruction starts a record and the value is omitted, the considered default value is 20.
If the instruction resumes a previously interrupted record, no set value is considered.
If it was not possible to start the recording, error contains a value not equal to 0, otherwise it contains 0.

Error code Description

0 No errors

1 There are some differences between the device configuration in the numeric control and the
device configuration in Albatros

2 The number of the devices to record exceeds the maximum number provided for the system

3 No devices in the configuration

4 The communication software in the remote module does not support the blackbox
functionality (remote modules only)

5 The numeric control prevents the recording from being started

6 Error in uploading the database management library

7 The number of columns for the table exceeds the maximum number of columns that can be
managed by the database

8 Could not open the database on disc

9 Could not create in the database the recording table

10 Error in IP address for the communication with the remote module (remote modules only)

11 Could not create the communication socket to receive the data (remote modules only)

12 Could not associate a local address to the communication socket (remote modules only)

13 Could not connect to the remote socket (remote modules only)

14 Could not access to the memory region shared with the numeric control

15 The hardware configuration prevents from using the "BlackBox" functionalities

16 The functionality has been disabled in TPA.ini

See also PAUSEBLACKBOX and ENDBLACKBOX.

ISO10.3.20

ISOG0

Syntax
ISOG0 label, axis1 position1, axis2, position2, axis3, position3, axis4,

positiona4,axis5, position5, [value]

Arguments
label constant or variable integer. Label identifying a displacement bloc. (N in the

ISO standard)
axis1 device name of axis type. (X in the ISO standard)
position1 constant or variable Position of axis1 operational space
axis2 device name of axis type. (Y in the ISO standard)
position2 constant or variable Position of axis2 operational space

Albatros242

Numeric control

axis3 device name of axis type. (Z in the ISO standard)
position3 constant or variable Position of axis3 operational space
axis4 device name of axis type. (C in the ISO standard)
position4 constant or variable Position of axis4 joint space
axis5 device name of axis type. (B in the ISO standard)
position5 constant or variable Position of axis5 joint space
value constant or variable double. It represents the feed rate percentage. (F in the

ISO standard)

Description
It sets the rapid movement. The rapid movement sections are managed as synchronized. The points
defined by the user are the extrema of the single space of displacement covered, so that all the axes are
synchronized to each other. That means that the physical axes move individually, even though they start
and arrive simultaneously, in the same way as in the instructions MULTIABS and MULTIINC. The tool point
does not cover a line in the operational space and its trajectory is not checked. The parameter label is used
in association with the instruction SETLABELINTERP to identify univocally the displacement bloc. The first
three positions identify the position of the point in the operational space, while the following two positions
define the value of the rotating axes in the joint spaces. The feed rate value defines the percentage of
reduction as regards the most possible speed rate (In ISO: F0 highest speed, F100 FeedRate null, therefore
the axes are still).
The instruction generates a system error (4105- Instruction not executable on axis AxisName), if used on
stepper axes.
The instruction WAITCOLL cannot be used, because starting from the collision the interpolation link to the
other axes that contribute to the movement and generate a profile other than that expected, would be get
lost.
If used, the system error no. "4101 – Inconsistent management of axis AxisName" is generated.

ISOG1

Syntax
ISOG1 label, axis1, position1,axis2, position2, axis3,

position3,axis4,position4,axis5, position5, [value]

Arguments
label constant or variable integer. Label identifying a displacement bloc. (N in the

ISO standard)
axis1 device name of axis type. (X in the ISO standard)
position1 constant or variable Position of axis1 operational space
axis2 device name of axis type. (Y in the ISO standard)
position2 constant or variable Position of axis2 operational space
axis3 device name of axis type. (Z in the ISO standard)
position3 constant or variable Position of axis3 operational space
axis4 device name of axis type. (C in the ISO standard)
position4 constant or variable Position of axis4 operational space
axis5 device name of axis type. (B in the ISO standard)
position5 constant or variable Position of axis5 operational space
feed rate constant or variable double. it represents the Feed rate value. (F in the ISO

standard)

Description
It defines the point in the operational space that should reach the tool point at the end of the interpolation
of the current bloc. The parameter label is used in association with the instruction SETLABELINTERP to
identify univocally the displacement bloc. The first three positions identify the position of the tool point in
the operational space, while the following two positions define the value of the rotating axes in the
configuration space. The value Feed defines the feed rate of the tool point as measure unit (millimeters or
grades) per minute (set in the presence of an instruction ISOG94) as inverse of the execution time (in the
presence of the instruction ISOG93). The parameter value is compulsory for the first instruction ISOG1 of
the interpolation movement.
The instruction generates a system error (4105 – Instruction not executable on axis AxisName), if used on
stepper axes.
The instruction WAITCOLL cannot be used, because starting from the collision, the interpolation link to the
other axes that contribute to the movement and generate a profile other than that expected, would be get
lost.
If used, the system error no. "4101 – Inconsistent management of axis AxisName" is generated.

GPL Language 243

Numeric control

ISOG9

Syntax
ISOG9 axis

Arguments
axis name of device of type axis

Description
It enables the forced stop of the movement. If this instruction is active, the interpolation or the rapid
movement are stopped before jumping to the next bloc. However, it is not a blocked instruction, like the
instruction WAITSTILL. The control is informed about a forced stop and the capture process of the
movement blocs proceeds up to the filling of the lookahead. The parameter axis finds the interpolation
channel with 5 axes to be stop at the end of the bloc calculated before. In this case there is no difference if
an instruction ISOG1 on an instruction ISOG0 is performed.

ISOG90

Syntax
ISOG90 axis

Arguments
axis name of device of type axis

Description
It sets the interpretation of the positions as absolute positions. The parameter axis finds the interpolation
channel with 5 axes, that from this instruction on will interpret the axes positions as absolute positions
(default condition). In this case there is no difference if an instruction ISOG1 on an instruction ISOG0 is
performed.

ISOG91

Syntax
ISOG91 axis

Arguments
axis name of device of type axis

Description
It sets the interpretation of the positions as relative positions The parameter axis finds the interpolation
channel with 5 axes, that from this instruction on will interpret the axes positions as relative positions. In
this case there is no difference if an instruction ISOG1 on an instruction ISOG0 is performed.

ISOG93

Syntax
ISOG93 axis

Arguments
axis name of device of type axis

Description
It sets the speed interpretation as inverse of the execution time. The parameter axis finds the interpolation
channel with 5 axes, that from this instruction on will interpret the value arisen from the F-parameters of
the instruction. ISOG1 as inverse of the execution time expressed in minutes. Thanks to this, the control is
able to determinate the speed rate to be kept by the tool point in the interpolation blocs.

ISOG94

Syntax
ISOG94 axis

Arguments
axis name of device of type axis

Description

Albatros244

Numeric control

It sets the interpretation of the speeds as units of measure per minute. The parameter axis finds the
interpolation channel with 5 axes, that from this instruction on will interprete the speed rates as measure
units per minute (default condition).

ISOG216

Syntax
ISOG216 DrehachsenMatrixName, WerkzeughalterMatrixName,

WerkzeughalterMatrixName,FreigabeMaske, Achse1, Achse2,
Achse3, Achse4, Achse5xis5

Arguments
DrehachsenMatrixName Name der Matrix. Sie enthält die Daten über die Drehachsen
WerkzeughalterMatrixName Name der Matrix. Sie enthält die Daten über den Werkzeughalter

Name der Matrix. Sie enthält die Daten über die
Werkzeuge
FreigabeMaske Variable or Integer constant. C and B axes enabling mask
Achse1 device name of axis type. (X in the ISO standard)
Achse2 device name of axis type. (Y in the ISO standard)
Achse3 device name of axis type. (Z in the ISO standard)
Achse4 device name of axis type. (C in the ISO standard)
Achse5 device name of axis type. (B in the ISO standard)

Description
It identifies the three matrices for the machine parametrisation and the five devices of axis type composing
the same. Such instruction should be performed before every other ISO instruction. The parameter
EnablingMask defines which rotation axes (C and/or B) should be enabled. To set the values, reference is
made to the following table:

EnablingMask Description

31 Disabling C and B axes
23 Enabling the only B axis
15 Enabling the only C axis
7 Disabling C and B axes

Note
The unit of measure, in which the values of the rotary axes are expressed in the configuration, must be
degrees.
The link among the physical axes and the virtual ISO axes, set through this instruction, is brought to the
end through the instruction ISOM2 or when the task, where the instruction is defined, has finished.
Therefore, the axes can be used for classic movement.

ISOG217

Syntax
ISOG217

axis1,axis2,axis3,axis4,axis5,virtualAxis1,virtualAxis2,virtualAxis3,
virtualAxis,virtualAxis5

Arguments
axis1 device name of axis type
axis2 device name of axis type
axis3 device name of axis type
axis4 device name of axis type
axis5 device name of axis type
virtualAxis1 device name of virtual axis type (X in standard ISO)
virtualAxis2 device name of virtual axis type. (Y in the ISO standard)
virtualAxis3 device name of virtual axis type (Z in standard ISO)
virtualAxis4 device name of virtual axis type (C in standard ISO)
virtualAxis5 device name of virtual axis type (B in standard ISO)

Description
It describes the physical axes and the virtual axes, which make up the machine. The virtual axes describe
position and orientation of the tool and must be declared as virtual type in Albatros configuration. The first
five specified axes must be physical and are controlled by the interpolator. The next five must be virtual
axes; they are the axes that are used in the instructions ISOG0 and ISOG1.
This instruction must be be performed before every other ISO instruction.

GPL Language 245

Numeric control

The formulas of direct and inverse kinematics to switch from a position in the space of the joints (physical
axes) to the operational space (virtual axes) must be specified through the instruction KINEMATICEXPR for
each of the ten axes, defined in the instruction ISOG217.
The instruction generates a system error (4105 – Instruction not executable on axis AxisName) if used on
stepper axes.

Note
The link between the physical axes and the virtual ISO axes set through this instruction, is loosed when the
task, where the instruction is defined, is brought to an end or when the instruction ISOM2 is performed.
Therefore, the axes can be used for classic movement.

ISOM2

Syntax
ISOM2 axis

Arguments
axis name of device of type axis

Description
It frees the axes free from ISO movement, set through the instruction ISOG216 or the instruction ISOG217

ISOM6

Syntax
ISOM6 axis, RotaryMatricesRowIndex, ToolHolderMatrixRowIndex,

ToolMatrixRowIndex

Arguments
axis name of the axis device
RotaryMatricesRowIndex constant or variable integer. Row index of the rotary axes matrix
ToolHolderRowMatrixIndex constant or variable integer. Row index of the matrix of the toolholder
ToolHolderRowMatrix constant or variable integer. Row index of the matrix of the toolholders

Description
It sets the use of a group of parameters describing the machine's kinematics. The indexes refer to three
matrices whose name is determined by the user. They are declared in the file of the global variables of
Albatros. The axis parameter identifies the corresponding interpolation channel. How the three matrices in
the file of the global variables should be declared, is described in the tables, as follows:

Matrix field Matrix of rotary axes

X - Offset Offset along X between the pivot point and the control point of the head

Y-Offset Offset along Y between the pivot point and the control point of the head

Z-Offset Offset along Z between the pivot point and the control point of the head

Out-of-alignment
of X

Deviation in X between rotation and slewing axes (when the position of C-axis = 0)

Out-of-alignment
of Y

Deviation in Y between rotation and slewing axes (when the position of C-axis = 0)

Out-of-alignment
of Z

Nose-pivot point distance

δ - angle δ Angle around Z for the correct placement of the head with respect of zero point
machine.

γ - angle γ Angle between rotation and slewing plane.

Matrix fields Toolholder Matrix

PU X-Offset Offset in X between the toolholder's coupling point to the motor and the tool's c oupling
point to the toolholder (when the position of C-axis = 0 and vertical motor)

PU Y-Offset Offset in Y between the toolholder's coupling point to the motor and the tool's coupling
point to the toolholder (when the position of C-axis = 0 and vertical motor)

PU Z-Offset Offset in Z between the toolholder's coupling point to the engine and the tool's coupling
point to the toolholder (when the position of C-axis = 0 and vertical motor)

Albatros246

Numeric control

Angle α Phase displacement angle between motor and toolholder axis (with respect to Z)

Angle β Phase displacement angle between motor and toolholder axis (with respect to Y)

Matrix fields Matrix of the toolholders

Length of the tool Length of the tool

ISOSETPARAM

Syntax
ISOSETPARAM ParameterIndexNumber, value

Arguments
ParameterIndexNumber constant or variable integer. It is the number identifying a parameter
constant value or variable float. It is the value to set.

Description
It sets some parameters ruling the fluidity of the ISO interpolated movement. The meaning of each
ParameterIndexNumber, the values within which the variable should be included and the values
defaults are explained in the table, as follows:

ParameterInde
xNumber

RANGE Default Meaning

0 0.0-100.0 50.0

Linear axes slowdown
percentage in case of angular
point
(0= no slowdown, 100=
maximum slowdown allowed by
the interpolator)

1 0.0-100.0 50.0

Rotating axes slowdown
percentage in case of angular
point.
(0= no slowdown, 100=
maximum slowdown allowed by
the interpolator)

2 0.5-1.0 0.9

Factor of speed reduction on
curviliear abscissa in case of
angular point.
(1=no reduction, 100=maximum
slowdown allowed)

3 0.0-100.0 60.0

Slowdown percentage in case of
close discontinuities.
(0=no slowdown, 100=maximum
slowdown allowed by the
interpolator)

4 0.0-100.0 10.0
Smooth percentage of the
trajectory

5 (Greater than 0.0)-1.0 0.2

Minimum dimension of the space
to cover with only linear axes.
The value is expressed in
millimeters.

6 (Greater than 0.0)-1.0 0.1

Minimum dimension of the space
to cover with only rotary axes.
The value is expressed in
degrees.

7 0.0-100.0 100.0

Percentage of the applied
minimum smooth value
(0 = minimum value of invalid
smooth, 100 = maximum
percentage of the minimum
smooth value)

GPL Language 247

Numeric control

8 1.0.100.0 1.0

Multiplication factor applied to
the accelerations and to the
decelerations defined in the
configuration. It increments the
acceleration and the max.
deceleration of the only linear
axes. Values external to the
interval generate the system
error no. 4399 – Parameter out
of range.

9 1.0-100.0 1.0

Multiplication factor applied to
the accelerations and to the
decelerations defined in the
configuration. It increments the
acceleration and the max.
deceleration of the only rotary
axes. Values external to the
interval generate the system
error no. 4399 – Parameter out
of range.

10 0.0-1.0 0.0

Flag to enable (0.0) or disable
(1.0) the speed among
consecutive blocks to be reduced
in case of angular point.
The speed reduction can also be
obtained by using the instruction
with the following parameters:
ISOSETPARAM 0 0.0
ISOSETPARAM 1 0.0
ISOSETPARAM 2 1.0

KINEMATICEXPR

Syntax
KINEMATICEXPR axis = expression

Arguments
axis name of device of physical or virtual axis type
expression group of operators

Description
It allows to define single expressions of direct and inverse kinematics. Before performing this instruction,
the instruction ISOG217 describing the physical axes and the virtual axes, that make up the machine,
must be called. For each axis defined in ISOG217 the instruction KINEMATICEXPR. must be called. The
kinematics expression of an axis in the space of the joints (inverse kinematics) can be a function of

- variables
- constants
- coordinates of the axes in the operative space.

The kinematics expression of an axis in the operational space (direct kinematics) can be a function of
- variables
- constants
- coordinates of the axes in the space of the joints.

The expression syntax is the same as in the instruction EXPR, the only difference being that local variables
cannot be used. Furthermore, axes of the same type as the axis, declared in axis and not declared in the
instruction ISOG217, cannot be used. E.g, if the kinematics of a virtual axis, already declared in the
instruction ISOG217 is being defined, in the expression only the five physical axes, that are declared in the
ISOG217 , can be used.

Example
ut as double ; tool number
offsety as double ; offset Y nose fulcrum
offsetz as double ; offset Z nose fulcrum

Function ISO5Ax

setval 100,ut

Albatros248

Numeric control

setval 120.0,offsety
setval 60.0,offsetz
; EXPLICIT KINEMATICS
ISOG217 Rx Ry Rz Rc Rb X Y Z C B

; DEFINITION OF THE KINEMATICS EXPRESSIONS
; EXPLICIT INVERSE KINEMATICS Rx physical AXIS
KinematicExpr Rx = X - 135 + ut * sin (B) * cos (C)

; EXPLICIT INVERSE KINEMATICS RY physical AXIS
KinematicExpr Ry = Y + offsety + ut * sin (B) * sin (C)

; EXPLICIT INVERSE KINEMATICS Rz physical AXIS
KinematicExpr Rz = Z + offsetz + ut * cos (B)

; EXPLICIT INVERSE KINEMATICS Rc physical AXIS
KinematicExpr Rc = C

; EXPLICIT INVERSE KINEMATICS Rb physical AXIS
KinematicExpr Rb = B

Instructions that are no longer available10.3.21

INPBCD reads a set of digital nibbles in BCD format
OUTBCD modifies a set of digital nibbles in BCD format
SETFORCEDBCD forces a nibble set in BCD format

CANOPENDRIVER opens a CANopen communication channel
CANCLOSEDRIVER closes a CANopen communication channel
CANRESETBOARD resets a CANopen board
CANSETOBJECT writes a CANopen object
CANGETOBJECT reads a CANopen object

SLMCOMMAND runs a SLM command
SLMEEPROMDISABLE runs an EEPROM writing disabling command
SLMEEPROMENABLE runs an EEPROM write permission
SLMGETEEPROM reads an EEPROM memory location
SLMGETPARAM reads a SLM parameter
SLMGETREGISTER reads a SLM register
SLMGETSTATUS reads a drive quantity
SLMSETEEPROM writes a location of EEPROM memory
SLMSETPARAM sets a SLM parameter
SLMSETREGISTER sets a SLM register

HOMING searches for the "zero position"

SYNCROOPEN opens a synchronized movement channel
SYNCROCLOSE closes the synchronized movement channel
SYNCROMOVE assigns a synchronized movement point
SYNCROSETACC sets the acceleration for synchronized movements
SYNCROSETDEC sets the acceleration for synchronized movements
SYNCROSETVEL sets the acceleration for synchronized movements
SYNCROSETFEED sets the axes speed for a synchronized movement
SYNCROSTARTMOVE starts processing a synchronized movement
GETVF reads the tension/frequency converter value

Instructions that cannot be used with interrupt10.3.22

The following instructionscannot be used in functions called by ONFLAG, ONINPUT, and ONERRSYS. Their use is
not allowed in real-time tasks either.

Instructions that, in turn, call a function on interrupt:
· ONFLAG
· ONINPUT
· ONERRSYS

Instructions that involve a wait:

GPL Language 249

Numeric control

· WAITINPUT
· WAITFLAG
· WAITACC
· WAITCOLL
· WAITDEC
· WAITREG
· WAITTARGET
· WAITWIN
· WAITSTILL
· WAITTASK
· WAITRECEIVE
· WAITPERSISTINPUT
· MULTIWAITFLAG
· MULTIWAITINPUT

Communication instructions:
· SEND
· RECEIVE
· CLEARRECEIVE
· COMOPEN
· COMCLOSE
· COMREAD
· COMREADSTRING
· COMWRITE
· COMWRITESTRING
· COMGETERROR
· COMCLEARRXBUFFER
· COMGETRXCOUNT

The following instructions are pertinent to axis movement:
· MOVINC
· MOVABS
· LINEARINC
· LINEARABS
· CIRCLE
· CIRCINC
· CIRCABS
· HELICINC
· HELICABS
· COORDIN
· MULTIABS
· MULTINC
· SETRIFLOC
· SETTOLERANCE
· RESRIFLOC
· SETPFLY
· SETPZERO
· SETINDEXINTERP
· STARTINTERP
· FASTREAD
· ENABLE
· DISABLE
· ENDMOV

ISO instructions:
· ISOG0
· ISOG1
· ISOG9
· ISOG90
· ISOG91
· ISOG93
· ISOG94
· ISOG216
· ISOG217
· ISOM2
· ISOM6
· ISOSETPARAM
· KINEMATICEXPR

Albatros250

Numeric control

 Blackbox Instructions:
· ENDBLACKBOX
· PAUSEBLACKBOX
· STARTBLACKBOX

The following instructions are pertinent to EtherCAT management:
· READDICTIONARY
· WRITEDICTIONARY

Instructions pertinent to multitasking:
· SENDMAIL
· WAITMAIL
· ENDMAIL
· SENDIPC
· WAITIPC
· TESTMAIL
· TESTIPC

Instructions that imply a long processing time:
· SORT
· FIND
· FINDB
· MOVEMAT

10.4 Examples

Homing on Interrupt10.4.1

;---
; Example of on-the-fly homing routine
;
; The function executes the following operations:
;
; 1) It sets the axis by disabling software limits
; and setting position on zero.
; 2) It checks that the sensor is not already on ON status.
; If it is on ON, it moves the axis and waitsfor it to return
; to OFF status. If this does not happen in 30 seconds
; it generates an error message.
; 3) It sets the sensor search speed
; 4) It launches axis movement and enables "on the fly" homing
; for the specified axis. When the interrupt is relesed,
; the axis position is set on zero and movement to a disengage
; position is started automatically.
; 5) It waits for the axis to reach the disengage position.
; 6) It resets axis limits
;
;
; © TPA
;---
Function Fast_Homing

ResLimPos
ResLimNeg
SetQuote

axis
axis
axis,0

; Axis start-up

IfInput FastInput,OFF,Goto Continue ; Tests occupied sensor
SetVel axis,5 ; Sets the

; disengagement speed
MovAbs axis,30 ; Moves the axis
WaitInput FastInput,OFF,30,Call Error ; Tests the micro

; disengagement,
; Error after TimeOut=30

EndMov axis ; Stop of the axis
WaitStill axis ; waits while the axis stops

GPL Language 251

Numeric control

Continue:
SetVel axis,10 ; Homing sensor search speed
MovAbs axis,-1000 ; Sensor search negative movement
SetPFly axis,ON,10,0 ; Interrupts hook

; and sets disengagement
; speed and position

WaitStill axis ; wait while the axis stops
SetLimPos
SetLimNeg

axis
axis

; Reset axis limits

Fret

; subprocedure to send error messages
Error:

Error ERR_SETP ;Error signalled: impossible to
proceed

Ret

Axis movement server10.4.2

;--
; Example of axis movement server:
;
; The server moves the machine's axes
; on behalf of other tasks.
;
; The client tasks send their commands in the form of
; messages (mails) to a postbox.
;
; The server takes the commands from the box and executes them.
;
; The requests are queued in the post box, so that
; if a request arrives while the server is already
; engaged, it is not lost, and will be dealt with as soon as possible.
;
; The server is the only task to move axes. This avoids
; conflicts.
;
; The server is implemented by the Master_axes function.
;
; An example of client is implemented by the Check_flag function.
; This function checks the status of a flag
; periodically and when it finds it on ON it sends the server
; the axis homing execution command.
; The flag will presumably be set on ON manually
; by the operator, using for example the synoptic view.
;
;--

;---------------------------------
; -- MACHINE GLOBAL CONSTANTS --
;---------------------------------
Const MBOX = 101 ; identifies the command post box
Const SETP = 10 ; axis homing
Const CHG = 11 ; tool change
Const FORO = 12 ; executes hole

;-------------------
; --- AXIS GROUP---
;-------------------

; definition of error messages
Defmsg ERR_CMD "Axis group command unknown"

; --- Server ---
Function Master_axes autorun

Albatros252

Numeric control

local cmd as integer ; command
local position_X as double ; position X hole
local position_Y as double ; position Y hole

loop:
waitmail MBOX,cmd,position_X,position_Y ; wait command

; When the command arrives we identify it
; and execute the required action
Select cmd

case SETP
fcall homing_axes

; Axis Homing

case CHG
fcall Change_tool

; Executes tool change

case FORO
fcall Perforation
position_X,position_Y

; hole in
; specified position

case else
call error

endselect

endmail MBOX ; command execution notification
goto loop wait for new command

fret

; subprocedure for error message sending
error:

error ERR_CMD
ret

;-------------------------
; --- GENERIC GRoUP ---
;-------------------------

; --- Client ---
Function Check_flag

loop:

ifflag Setp_axes,OFF, goto loop ; tests flag status

; OK the flag is on ON, send command
sendmail MBOX,WAITTACK,SETP,0.0,0.0

resetflag Setp_axes ; reset flag
goto loop ; back to wait

fret

; NOTICE THAT:
; - after the "SETP"command, the two parameters "position_X"
; and "position_Y" must be specified even if it does not
; make sense for the Homing operation.
; Because the server can not know beforehand which command
; it will receive,we must specify two values
; of the type expected by the server,
; in this case, two DOUBLE. The values to be set are "0.0" and "0.0".
; - the "WAITACK" parameter makes the client wait
; for the server to conclude the command.
; The client can continue its own execution only when the Server
; has executed an ENDMAIL or has started processing a new
; command (WAITMAIL).

GPL Language 253

Numeric control

Main Cycle with error management10.4.3

;--
; Hypothetical main function
; starts machine and executes test cycle
;--
Function Main

OnErrSys GestErrSys ; enables error management
StartTask
StartTask

Emergencies
Processor

; start

Enableaxes

loop:
IfFlag Flag,OFF, ResetEmergencies
.........
Goto loop

Fret

;-----------------------------------
; error management function
;-----------------------------------

Function GestErrSys
Param nerror as integer
Param task as function
Param typedevice as device

EndTask task ; End Processor task
If nerror,>,5,goto noerraxis ; The first 5 errors

; are related to
; the axes

ResetFlag Flag
Disableaxes

noerraxis:
Fret

Operations on strings10.4.4

;---
; Example of string manipulation
;---
Function Example

Local
Local
Local
Local
Local

string1 as string
string2 as string
string3 as string
length as integer
position as integer

SetString "String for",string1 ; string1 now contains
; "String for"

SetString " test",string2

AddString string1,string2,string3 ; stringa3 contains
; "String for test"

Search
Search

string3,'t',position
string3,'Z',position

; position equals 2
; position equals -1

Left string3,7,string1 ; string1
; contains "String"

Right string3,2,string2 ; string2
; contains "st"

Mid string3,9,2,string3 ; string3
; contains "for"

Albatros254

Numeric control

ControlChar 65,string1 ; string1
; contains "A"

Len string3,length ; length equals 2

Str length,string3 ; string3
; contains "2"

Val position,string1 ; string1
; contains "-1"

AddString "The result is",string1,string2

; string2 contains "The result is -1"

Fret

Sequential / Parallel Execution10.4.5

;--
; Example of a routine testing the Homing
; of a 3 axes machine to avoid any
; mechanical interference.
;
; The Homing of the single axes is implemented
; by functions whose text has been omitted.
; See example "Homing Routine".
;
; The Homing of the z axis is carried
; out first(as theoretically it can not be
; done with the others),
; When this is concluded, the X and Y axis Homing
; is executed simultaneously.
;--

; message for the operator (translated in set language)
DefMsg MSG_SETP ITA "Homing assi in corso..."

ENG "Homing in progress..."

Function Homing
Message MSG_SETP ; informs the operator

Fcall HomingAxisZ ; Homing of Z axis

; OK Z axis Homing is concluded

StartTask
StartTask

HomingAxisX
HomingAxisY

; launches the homing of X and Y

WaitTask
WaitTask

HomingAxisX
HomingAxisY

; wait for the task to end

DelMessage MSG_SETP ; deletes the message
; for the operator

Fret

Homing Routine10.4.6

;--
; Example of axis setpoint routine
;
; The function executes the following operations:
; 1) it disables the software axis limits
; 2) it sets the switch search speed
; 3) it moves the axis to an incremental position that
; guarantees reaching the switch
; 4) it waits for the axis to release the switch

GPL Language 255

Numeric control

; 5) it stops the axis and waits for movement to end
; 6) it sets the speed (low) of the disengage switch
; 7) it makes the axis move backwards the sufficient space
; to disengage the switch
; 8) it waits for switch disengage
; 9) it sets the new position for the axis
; 10) it resets default speed and software limits
;
; © TPA.
;--

Function Homing

ResLimPos
ResLimNeg

axis
axis

; disables the software limits

SetVel axis,10 ; sets the speed

MovInc axis,10000 ; moves the axis

WaitInput Switch,ON ; waits for the switch

EndMov axis ; stops the axis
waitStill axis ; waits for the axis to stop

SetVel axis, 0.1 ; sets the disengagement speed

MovInc axis,-100 ; moves the axis

WaitInput Switch,OFF ; waits for the switch
; to disengage

SetQuote axis,0 ; assigns the new position

SetVel axis ; resets the speed
SetLimpos
SetLimneg

axis
axis

; resets the software limits

Fret

Iso movements10.4.7

; Example of ISO movement
;
; A profile is generated using the instruction ISOG0 and ISOG1
;
; © TPA.

;--*

; Declaration of ISO matrices
; Matrix of rotary axes
MxRot[5] as double:off_X double:off_Y double:off_Z double:dis_X
double:dis_Y double:dis_Z double:delta double:gamma
; Toolholder matrix
MxPorta[1] as double:off_X double:off_Y double:off_Z double:alpha
double:beta
; Tool matrix
MxTools[10] as double:ut double

Function ISOInterpolation

; setting of standard values of machine parametrisation
setval 90.0 MxRot[5].gamma
setval 260.3 MxTools[10].ut
setval MxTools[10].ut ut

; setting of parameters of algorithm
IsoseTPAram 0 50

Albatros256

Numeric control

IsoseTPAram 1 50
IsoseTPAram 2 0.9
IsoseTPAram 3 60
IsoseTPAram 4 30

; machine settings: declares the three matrices used for
; the machine parametrisation
; and the physical axes used in the ISO movements.
isoG216 MxRot MxTool MxHolder 31 X Y Z C B ; IMPLICIT KINEMATICS

; setting of group of parameters describing the machine's kinematics.
isoM6 X 5 1 10 ; IMPLICIT KINEMATICS

; setting of the starting value
setquote x 500
setquote y 300
setquote z 0
setquote c 0
setquote b 0
setvel x
setvel y
setvel z
setvel c
setvel b
setveli x y z c b

; profile execution
isoG0 1001,X 998.0,Y 600.0,Z 0.0,C 90.0,B 45.0,50.0
isoG1 1001,X 998.0,Y 600.0,Z 0.0,C 90.0,B 45.0,10000.0
isoG1 1003,X 996.0,Y 600.0,Z 0.0,C 90.0,B 45.0,10000.0
isoG1 1002,X 600.0,Y 600.0,Z 0.0,C 90.0,B 45.0,10000.0
isoG1 1004,X 599.131759111665,Y 599.924038765061,Z 0,C 100,B 45.0,10000.0
isoG1 1006,X 598.289899283372,Y 599.69846310393,Z 0,C 110,B 45.0,10000.0
isoG1 1005,X 597.5,Y 599.330127018922,Z 0,C 120,B 45.0,10000.0
isoG1 1003,X 596.786061951567,Y 598.830222215595,Z 0,C 130,B 45.0,10000.0
isoG1 1002,X 596.169777784405,Y 598.213938048433,Z 0,C 140,B 45.0,10000.0
isoG1 1012,X 595.669872981078,Y 597.5,Z 0,C 150,B 45.0,10000.0
isoG1 1011,X 595.301536896071,Y 596.710100716628,Z 0,C 160,B 45.0,10000.0
isoG1 1031,X 595.075961234939,Y 595.868240888335,Z 0,C 170,B 45.0,10000.0
isoG1 1102,X 595.0,Y 0.0,Z 0.0,C 180.0,B 45.0,10000.0
waitstill X Y Z C B

fret

Tecnologie e Prodotti per l'Automazione srl

Via Carducci 221
I - 20099 Sesto S.Giovanni
(MI)
Tel. +39 02.36527550
Fax. +39 02.2481008
www.tpaspa.com

	Introduction
	How to use this manual
	Work windows

	System composition
	Access rights to the system
	Multilingual support
	Typical architecture of the system
	Organization and logic configuration
	Devices

	Synoptic Panel
	Using the Synoptic Panel
	How to operate on the Synoptic Panel
	How to act on Devices
	Manual Axis Movement

	Technological and Tool parameters
	Technological Parameter Window
	Tool Parameter Window

	Diagnostics
	The Diagnostics window
	Diagnostics window composition
	Representation of the Devices
	Interacting with Devices
	List of navigation keys to navigate through a tree structure
	Linearity correctors
	Axis calibration control board

	Errors and Notifications
	Introduction
	System Errors
	Errors generated by axes control
	1 AxisName: incorrect encoder connection
	2 AxisName: not ended movement
	3 AxisName: servoerror
	4 AxisName: limit switch positive
	5 AxisName: limit switch negative
	10 AxisName: the Real-Time execution is faster than the profile construction

	Errors generated by remote I/O
	2049 Receiver number: incorrect configuration
	2050 Receiver number: disconnected
	2051 Receiver number: reconnected
	2052 Receiver number: error reading Output not connected (number OutputNumber)
	2054 Receiver number: wrong type
	2055 Receiver number: initialized
	2056 Receiver number: +24 VDC power fail
	2057 GreenBus power fail
	2058 Receiver number: error reading DeviceType DeviceName
	2059 Test failed on dual port memory of transmitter
	2060 Error initializing transmitter
	2061 Error transmitting firmware to transmitter
	2062 Error transmitting configuration to transmitter
	2063 Error transmitting configuration to receiver
	2064 Receiver number: Incompatible firmware version
	2065 Receiver number: Error in an asynchronous communication
	2066 Receiver number: Generic error
	2067 Receiver number: Error while transmitting the configuration
	2068 Receiver number: Internal error n. errornumber
	2069 Receiver number: +24 VDC power fail in bank number

	Errors generated by MECHATROLINK-II
	2308 Board BoardNumber: The initialisation failed due to an incorrect setting of a configuration parameter
	2341 Board BoardNumber: The number of servodrives exceeds the maximum number allowed
	2342 Board BoardNumber: The hardware address of servodrive Servo exceeds the maximum value allowed
	2349 Board BoardNumber: Servodrive Servo not connected

	Errors generated by the CanBUS control
	2761 Node number: disconnected
	2762 Node number: reconnected
	2763 Error: missing transmission
	2764 Node number: Error of non-reception
	2765 Node number: Initialized
	2766 Fault condition on CAN interface
	2767 CANopen status loss
	2768 Node number: Error of PDO non-reception
	2769 Node number: Error receiving a non-configured node
	2770 Node number: Wrong configuration
	2771 Node number: SDO communication error
	2772 Timeout on querying nodes CAN cycle
	3073 Node number: Emergency error n. ErrorNumber
	3074 Node number: Generic CAN error n. ErrorNumber
	3088 CAN Board number: node NodeNumber: SDO communication error nr. ErrorNumber - description

	Errors generated by bus EtherCAT control
	3329 Error in the communication socket initialization
	3330 Error during the EtherCAT network scan
	3331 Error in the configuration of the transmission mailbox
	3332 Error in the configuration of the receive mailbox
	3333 EtherCAT board number: Error in the expansion type of node NodeNumber
	3334 Error during the PDO configuration
	3335 Node NodeNumber in alarm (ErrorNumber)
	3336 EtherCAT board number: The expansion number of node NodeNumber is wrong
	3337 EtherCAT board: Node NodeNumber: Disconnected
	3338 EtherCAT board: Node NodeNumber: Reconnected
	3340 EtherCAT board: Node NodeNumber did not respond to the request (Code)
	3341 EtherCAT board: Node NodeNumber does not exist
	3342 Disconnected cable
	3343 EtherCAT board number: Node NodeNumber does not switch to the SAFE-OPERATIONAL status (Code)
	3344 EtherCAT board number: Node NodeNumber does not switch to the OPERATIONAL status (Code)
	3345 EtherCAT board: Unstable communication
	4400 Too many active axes in FASTREAD (Function:NameFunction line:NumberLine)

	Errors generated by initialization
	769 Error in software configuration
	770 Wrong IRQ number in configuration
	772 Error reading the buffer memory area while initialising
	773 Reached maximum number of axes in configuration
	774 Axis Real-Time is not running
	775 No time left to run GPL
	776 Real-Time execution time too long
	777 Watchdog expired
	778 Main firmware code is blocked
	1025 Board BoardNumber: It does not respond to command number
	1026 Board BoardNumber: Error transmitting firmware to the axis board
	1028 Board BoardNumber: Firmware not present
	1029 Board BoardNumber: Main blocked
	1031 Board BoardNumber: Initialization error
	1032 Board BoardNumber: Dual port memory test failed
	1033 Board BoardNumber: Firmware Boot code is not running
	1035 Board BoardNumber: Not present
	1037 Board BoardNumber: Failed to open the dual port memory
	1039 Board BoardNumber: Watchdog expired
	1040 Board BoardNumber: +24 VDC power fail
	1047 Board BoardNumber: Software configuration not allowed
	1052 Board BoardNumber: Boot code is running
	1053 Board BoardNumber: Axis Watchdog expired
	1055 Watchdog expired for board BoardNumber
	1056 Board BoardNumber: CAN interface power failed
	1057 Board BoardNumber: Internal error n° ErrorNumber

	Errors generated by memory management
	1281 Error in the memory allocation on the heap area
	1286 Error handling heap
	1287 Too many memory deallocations from the heap
	1289 Error creating global variables
	1290 Error in the dimension of non-volatile variables
	1291 Error in the dimension of read-only variables

	Errors generated by faults
	1559 Breakpoint Trace
	1569 Invalid microprocessor operating code
	1586 INTEGER value divided by zero
	1600 Overflow in the result of a floating point operation
	1601 Underflow in the result of a floating point operation
	1602 Invalid argument in a floating point operation
	1603 Floating point value divided by zero
	1604 Incorrect result in a floating point operation
	1605 Incorrect value for a floating point data
	1728 Attempt to get access to an invalid address
	1735 Generic exception
	1736 Data not aligned
	1801 Temperature alarm
	1802 Fan alarm
	1803 Unstable CPU frequency

	Errors generated by GPL instructions
	4097 The DeviceType device DeviceName is not configured
	4098 The global variable VariableName does not exist
	4099 Function FunctionName not found
	4101 Inconsistent management of axis AxisName
	4105 Instruction not executable on axis AxisName
	4106 The remote module of the stepper axis AxisName is not connected
	4107 SYSOK instruction has incorrect arguments
	4108 AxisName: Final position beyond software limits
	4110 Wrong speed
	4111 Negative Acceleration on axis AxisName
	4112 Negative Deceleration on axis AxisName
	4114 Axis AxisName: reset on Fast Input not effected
	4115 Axis AxisName: zero pulse not found
	4353 Unknown instruction code (Function:FunctionName line:LineNumber)
	4354 Incorrect mathematical operation (Function:FunctionName line:LineNumber)
	4355 Incorrect address of matrix or vector (Function:FunctionName line:LineNumber)
	4356 Instruction RET without CALL (Function: FunctionName line: LineNumber)
	4357 Local variable does not exist (Function:FunctionName line:LineNumber)
	4358 Jump label does not exist (Function: FunctionName line: LineNumber)
	4359 Incorrect macro argument (Function:FunctionName line:LineNumber)
	4360 Error in the memory allocation during the execution (Function:FunctionName line:LineNumber)
	4361 Too many tasks enabled (Function:FunctionName line:LineNumber)
	4362 Incorrect matrix format (Function:FunctionName line:LineNumber)
	4363 Too many active ONINPUT instructions (Function:FunctionName line:LineNumber)
	4364 Axis already engaged with local reference (Function:FunctionName line:LineNumber)
	4365 Instruction ONINPUT activated on the same INPUT (Function:FunctionName line:LineNumber)
	4366 Too many ONFLAG instructions active (Function:FunctionName line:LineNumber)
	4367 Instruction ONFLAG activated on the same FLAG (Function:FunctionName line:LineNumber)
	4368 A ReadOnly variable writing has been attempted (Function:FunctionName line:LineNumber)
	4369 Too many master axes active (Function:FunctionName line:LineNumber)
	4370 Too many slave axes active (Function:FunctionName line:LineNumber)
	4372 Incorrect use of an instruction (Function:FunctionName line:LineNumber)
	4373 Can't read feed rate (Function:FunctionName line:LineNumber)
	4374 Too many IPC instructions in execution (Function:FunctionName line:LineNumber)
	4375 FASTREAD executed on axes from different boards (Function:FunctionName line:LineNumber)
	4378 Instruction not enabled (Function:FunctionName line:LineNumber)
	4379 The instruction cannot be used in functions launched by Interrupt (Function:FunctionName line:LineNumber)
	4380 Too many writing requests into buffer memory area (Function:FunctionName line:LineNumber)
	4381 Cannot use a serial channel not yet open (Function:FunctionName line:LineNumber)
	4382 Cannot open a serial channel already open (Function:FunctionName line:LineNumber)
	4383 Attempt to open too many auxiliary processes (Function:FunctionName line:LineNumber)
	4384 Auxiliary process not in execution (Function:FunctionName line:LineNumber)
	4385 Attempt to open an auxiliary process from another task (Function:FunctionName line:LineNumber)
	4391 Error activating SYSOK (Function:FunctionName line:LineNumber)
	4394 Too many cycle errors (Function:FunctionName line:LineNumber)
	4395 Too many messages (Function:FunctionName line:LineNumber)
	4397 Stack overflow (Function:FunctionName line:LineNumber)
	4398 Stack underflow (Function:FunctionName line:LineNumber)
	4399 Parameter out of range (Function:FunctionName line:LineNumber)
	4865 The machine definition for the interpolation (G216 or G217) is missing
	4866 The index definition of the selected machine configuration (M6) is missing

	Errors generated by CNCTPA communication driver
	16385 Disconnected module
	16386 Connected module
	16387 Reconnected module
	16388 Initialized module
	16389 Module interrupted connection
	16641 The control firmware does not respond to commands
	16642 TpaSock does not respond to commands
	16643 Operating System cannot use RTX
	16645 Error sending firmware code
	16646 Could not restart firmware code
	16897 RTX not installed
	16898 User has no Administrator rights
	16899 Wrong dimension of module RAM
	16900 Module IP address is wrong
	16901 Module is already connected to another plant
	16902 The module is not configured
	16903 Firewall settings prevent communication
	16904 Network board not present or disabled
	16905 Control firmware code missing
	16906 RTX version incompatible with control firmware code
	16907 Operating system version is incompatible with control firmware code
	17153 BoardType: Firmware code of GreenBUS transmitter missing
	17154 BoardType: Part of firmware code of GreenBUS transmitter missing
	17155 BoardType: Error sending bootstrap code of GreenBUS transmitter
	17156 BoardType: Error sending Main code of GreenBUS transmitter
	17157 BoardType: Bootstrap code missing
	17158 BoardType: Main code missing
	17159 BoardType: Error sending bootstrap code
	17160 BoardType: Error sending Main code
	17409 Could not send auxiliary executable
	17410 Could not run auxiliary executable
	17667 DLLName: Could not run firmware code
	17668 DLLName: Could not get pointer to shared RAM
	17921 Could not send NODETPA
	17922 NODETPA did not restart
	17923 NODETPA not running
	18177 NODETPA tried to access an invalid address

	Generic Notifications
	Albatros starts running
	Albatros ends running
	Computer enters stand-by mode
	Computer exits stand-by mode
	Computer shutdown
	Current access level
	Software update of modules
	Sending configuration to the modules

	System Configuration
	Introduction
	Device Configuration
	Introduction
	Generic Device
	Digital output
	Analog input
	Axis
	Basic Data
	Movement parameters
	Interpolation parameters
	Other parameters
	Reference parameters
	Access levels
	Axis chaining
	Linearity correctors

	Logical Configuration
	Plant Configuration
	Group Configuration

	Physical Configuration
	System Configuration
	Hardware Configuration
	Default Configurations
	Configure a node of a TPA bus
	Configure a node of a CAN bus
	Bus control board
	CAN node
	Insert a new node
	Configure a node

	Characteristics of the EtherCat Management in Albatros
	Introduction
	EtherCAT hardware configuration
	Description of a PDO
	Modify a drive PDO
	Additional PDOs

	Automatic acquisition of EtherCAT nodes

	Virtual-physical Configuration
	Cabling maps

	List of navigation keys to navigate through a tree structure

	Development tools
	Editor GPL
	GPL Editor functions
	Use of regular expressions

	Insert a Message
	Cryptography
	Avalaible keyboard shortcut list

	Libraries
	Debug
	The debugger
	Task in execution
	All tasks
	Show call stack
	Breakpoints
	Variable content
	Available keyboard shortcut list

	Control initialization
	Network Connections
	Hardware Diagnostics
	EtherCAT network topology
	Viewing and editing objects in the nodes

	Test
	Print global on disk
	Start function
	Message Import
	User notice in the alarm report file

	Tools
	Customize…

	Browser
	The browser
	Source browser
	Available keyboard shortcut list

	Accessory programs
	XConfMerge: program to merge the configuration file
	XParMerge: program to merge two parameter files

	GPL Language
	Basic Features
	Introduction to GPL language
	Conventions and terminology
	Variables
	Type of data
	Data conversion
	Declaration and Visibility of the variables
	Modifiers
	Assigning a RANGE
	Writing and Reading Rights
	Constants

	Predefined constants
	Keywords
	Functions
	Device parameters
	Multitasking
	Communications
	Variables used in programming
	Axes
	Linearity correctors
	Message handling in different languages
	System Error Management

	Special functions
	Axis movement customization
	Standard calibration and movement functions
	Function OnUIEnd#
	Function OnUIPlugged#
	Function OnUIUnplugged#

	Instructions
	Conventions
	Types of instructions in the GPL language
	Input/Output
	GETFEED
	INPANALOG
	INPFLAGPORT
	INPPORT
	MULTIINPPORT
	MULTIOUTPORT
	MULTIRESETFLAG
	MULTIRESETOUT
	MULTISETFLAG
	MULTISETOUT
	MULTIWAITFLAG
	MULTIWAITINPUT
	OUTANALOG
	OUTFLAGPORT
	OUTPORT
	RESETFLAG
	RESETOUT
	SETFLAG
	SETOUT
	WAITFLAG
	WAITINPUT
	WAITPERSISTINPUT

	Axes
	CHAIN
	CIRCABS
	CIRCINC
	CIRCLE
	COORDIN
	DISABLECORRECTION
	EMERGENCYSTOP

	ENABLECORRECTION
	ENDMOV
	FASTREAD
	FREE
	HELICABS
	HELICINC
	JERKCONTROL
	JERKSMOOTH
	LINEARABS
	LINEARINC
	MOVABS
	MOVINC
	MULTIABS
	MULTIINC
	NORMAL
	RESRIFLOC
	SETINDEXINTERP
	SETLABELINTERP
	SETPFLY
	SETPFLYCHAINSTRAT
	SETPZERO
	SETPZEROCHAINSTRAT
	SETQUOTE
	SETQUOTECHAINSTRAT
	SETRIFLOC
	SETTOLERANCE
	START
	STARTINTERP
	STOP
	SWITCHENC
	WAITACC
	WAITCOLL
	WAITDEC
	WAITREG
	WAITSTILL
	WAITTARGET
	WAITWIN
	Axis Parameter
	Reading/Writing
	DEVICEID
	GETAXIS

	Point-to-point Movement
	SETACC
	SETDEC
	SETDERIV
	SETFEED
	SETFEEDF
	SETFEEDFA
	SETINTEG
	SETMULTIFEED
	SETPROP
	SETSLOPE
	SETVEL

	Interpolated Movement
	LOOKAHEAD
	SETACCI
	SETACCLIMIT
	SETACCSTRATEGY
	SETAXPARTYPE
	SETCONTORNATURE
	SETDECI
	SETDERIVI
	SETFEEDFAI
	SETFEEDI
	SETFEEDFI
	SETINTEGI
	SETPROPI
	SETSLOPEI
	SETSLOWPARAM
	SETVELI
	SETVELILIMIT

	Coordinated Movement
	SETFEEDCOORD
	SETOFFSET

	Chained Movement
	RATIO
	SETDYNRATIO

	Generic Parameters
	DYNLIMIT
	ENABLESTARTCONTROL
	NOTCHFILTER
	RESLIMNEG
	RESLIMPOS
	SETADJUST
	SETBACKLASH
	SETBIGWINFACTOR
	SETDEADBAND
	SETENCLIMIT
	SETINDEXEN
	SETINTEGTIME
	SETIRMPP
	SETLIMNEG
	SETLIMPOS
	SETMAXER
	SETMAXERNEG
	SETMAXERPOS
	SETMAXERTYPE
	SETPHASESINV
	SETREFINV
	SETRESOLUTION

	Counter
	DECOUNTER
	INCOUNTER
	SETCOUNTER

	Timer
	HOLDTIMER
	SETTIMER
	STARTTIMER

	Variables, Vectors and Matrixes
	CLEAR
	FIND
	FINDB
	LASTELEM
	LOCAL
	MOVEMAT
	PARAM
	SETVAL
	SORT

	Strings
	ADDSTRING
	CONTROLCHAR
	LEFT
	LEN
	MID
	RIGHT
	SEARCH
	SETSTRING
	STR
	VAL

	Communications
	CLEARRECEIVE
	COMCLEARRXBUFFER
	COMCLOSE
	COMGETERROR
	COMGETRXCOUNT
	COMOPEN
	COMREAD
	COMREADSTRING
	COMWRITE
	COMWRITESTRING
	RECEIVE
	SEND
	SENDIPC
	WAITIPC
	WAITRECEIVE

	Mathematics
	ABS
	ADD
	AND
	ARCCOS
	ARCSIN
	ARCTAN
	COS
	DIV
	EXP
	EXPR
	LOG
	LOGDEC
	MOD
	MUL
	NOT
	OR
	RANDOM
	RESETBIT
	ROUND
	SETBIT
	SHIFTL
	SHIFTR
	SIN
	SQR
	SUB
	TAN
	TRUNC
	XOR

	Multitasking
	ENDMAIL
	ENDREALTIMETASK
	ENDTASK
	GETPRIORITYLEVEL
	GETREALTIME
	GETREALTIMECOUNT
	HOLDTASK
	RESUMETASK
	SENDMAIL
	SETPRIORITYLEVEL
	STARTREALTIMETASK
	STARTTASK
	STOPTASK
	WAITMAIL
	WAITTASK

	Flow management
	CALL
	DELONFLAG
	DELONINPUT
	FCALL
	FOR/NEXT
	FRET
	GOTO
	IF/IFVALUE/IF-THEN-ELSE
	IFACC
	IFAND
	IFBIT
	IFBLACKBOX
	IFCHANGEVEL
	IFCOUNTER
	IFDEC
	IFDIR
	IFERRAN
	IFERROR
	IFFLAG
	IFINPUT
	IFMESSAGE
	IFOR
	IFOUTPUT
	IFQUOTER
	IFQUOTET
	IFRECEIVED
	IFREG
	IFSAME
	IFSTILL
	IFSTR
	IFTARGET
	IFTASKHOLD
	IFTASKRUN
	IFTIMER
	IFVEL
	IFWIN
	IFXOR
	ONERRSYS
	ONFLAG
	ONINPUT
	REPEAT/ENDREP
	RET
	SELECT
	TESTIPC
	TESTMAIL

	Various
	CLEARERRORS
	CLEARMESSAGES
	DEFMSG
	DELAY
	DELERROR
	DELMESSAGE
	ERROR
	IFDEF/ELSEDEF/ENDDEF
	MESSAGE
	SYSFAULT
	SYSOK
	TYPEOF
	WATCHDOG

	MECHATROLINK-II
	MECCOMMAND
	MECGETPARAM
	MECGETSTATUS
	MECSETPARAM

	Standard fieldbus
	AXCONTROL
	AXSTATUS
	CNBYDEVICE
	READDICTIONARY
	WRITEDICTIONARY

	EtherCAT
	ACTIVATEMODE
	ECATGETREGISTER
	ECATSETREGISTER
	GETPDO
	SETEOE
	SETPDO

	TMSBus boards with CAN control
	GETCNSTATE
	GETSDOERROR
	GETMNSTATE
	RECEIVEPDO
	SENDPDO
	SETNMTSTATE

	Simulation
	DISABLE
	DISABLEFORCEDINPUT
	ENABLE
	ENABLEFORCEDINPUT
	RESETFORCEDINPUT
	SETFORCEDANALOG
	SETFORCEDINPUT
	SETFORCEDPORT

	Blackbox
	ENDBLACKBOX
	PAUSEBLACKBOX
	STARTBLACKBOX

	ISO
	ISOG0
	ISOG1
	ISOG9
	ISOG90
	ISOG91
	ISOG93
	ISOG94
	ISOG216
	ISOG217
	ISOM2
	ISOM6
	ISOSETPARAM
	KINEMATICEXPR

	Instructions that are no longer available
	Instructions that cannot be used with interrupt

	Examples
	Homing on Interrupt
	Axis movement server
	Main Cycle with error management
	Operations on strings
	Sequential / Parallel Execution
	Homing Routine
	Iso movements

